124810 (690160), страница 3
Текст из файла (страница 3)
Рис. 12. Зависимость числа слоев частиц n порошковых материалов от давления Р: 1 – ППЛ (ПЖ-ЗС, толщина слоя 2,6 мм); 2 – порошок ПЖ-ЗС (4 мм); 3 – ППЛ (40% ПГ-СР2 и 60% ПГ-ФБХ6-2, 2,6 мм); 4 – порошок ПГ-СР2 (4 мм).
В зависимости от интервалов температур плавления различных ПМ, входящих в состав наплавляемой композиции, по отношению к температуре нагрева слоя частицы ПМ в результате наварки претерпевают неодинаковые изменения. Частицы относительно тугоплавких материалов остаются неизменными или дробятся, среднеплавких – пластически деформируются и спекаются, легкоплавких – расплавляются и заполняют поры между частицами, имеющими более высокие температуры плавления, весьма легкоплавких расплавляются, интенсивно окисляются, испаряются, сгорают.
Наплавленный слой практически всегда является гетерогенным, состоящим из тех же видов частиц, что и композиция ПМ, но объединенных в единое тело. Каждой из спекшихся частиц присущи свойства материалов, из которых они изготовлены, за исключением превратившихся в оксиды.
Широкие возможности для получения покрытий с заданными свойствами обеспечиваются при применении для наплавки порошково-полимерных материалов в виде лент или листов (ППЛ), представляющих собой пористое тело, частицы порошка в котором связаны эластичным полимером. Связывание частиц полимером позволяет снизить подвижность частиц под давлением и повысить толщину слоя частиц, располагающихся между сварочным роликом и деталью.
Наличие полимера вызывает изменения в технологии электроконтактной наплавки и оказывает влияние на свойства получаемых покрытий.
Влияние количества полимера и рабочего давления наплавки на электросопротивление было изучено С. Ф. Андроновым [3]на примере ППЛ, содержащих распыленный порошок железа ПЖ-3 с частицами размером до 0,8 мм.
В исходном состоянии, при отсутствии давления, объемное содержание порошка железа в ППЛ составляло 40–60% (плотность в пределах 2500–4500 кг/м3).
Присутствие полимерных оболочек и эластичных перемычек между частицами металла вызывает значительное повышение исходного удельного электросопротивления ППЛ по сравнению со свободным порошком. С ростом давления на ППЛ электросопротивление монотонно снижается и при давлении 50–60 МПа и содержании полимера до 9% практически не отличается от соответствующей величины для несвязанного порошка.
Наплавку ППЛ проводили шовным методом на внутреннюю поверхность чугунных деталей диаметром 106 мм. Наплавляемые ППЛ имели толщину 2,2–2,8 мм и содержали либо порошок железа (ППЛЖ), либо композиции порошковых материалов (ППЛК), состоящие из порошков железа, ферросплавов и самофлюсующихся сплавов. Длительность паузы между импульсами тока составляла 0,08 с. Остальные параметры режимов наплавки приведены в таблице 1.
Таблица 1. Режимы наплавки
№ режима | Удельный сварочный ток jН, кА/мм2 | Длительность импульса tИ, с | Давление Р, МПа | Скорость наплавки VН, м/мин | Размер частицы порошка, мм | Плотность ППЛ, кг/м3 | Содержание полимера,% |
1 2 3 4 5 6 7 | 0.8 0.8 0.8 0.5–1.0 0.8 0.8 0.8 | 0.12 0.12 0.12 0.12 0.04–0.20 0.12 0.12 | 20–60 40 40 40 40 40 40 | 1 1 1.0–2.5 1 1 1 1 | <0.16 0.08–0.72 <0.16 <0.16 <0.16 0.16–0.40 0.08–0.72 | 3500 3500 3500 3500 3500 3500 2500–4500 | 6 6 6 6 6 4–12 6 |
Формирование наплавленного слоя при электроконтактной наплавке ППЛ происходит в соответствии с законами порошковой металлургии. При наплавке ППЛК на режиме 1 увеличение давления приводит к монотонному снижению пористости наплавленного слоя. Это объясняется тем, что при малом давлении ролика деформация ППЛ затруднена (см. рис. 11, кривые 3 и 4). Это обусловлено наличием несущей способности полимерных мостиков, соединяющих частицы порошков. При увеличении давления до 12 – 15 МПа несущая способность снижается, так как начинается процесс деформации, и разрушения наиболее нагруженной части этих мостиков, который практически заканчивается при 33 – 50 МПа с ликвидацией воздушных пор, т. е. пористость наплавленного слоя уменьшается. В результате между роликом и деталью остается слой в четыре–восемь частиц. ППЛ, содержащие хлопьевидные частицы (порошок ПЖ-ЗС), деформируются значительно меньше, чем содержащие округлые частицы (ПГ–СР2 и ПГ-ФБХ6-2). Устойчивость под давлением толстых слоев ППЛ с хлопьевидными частицами весьма высока по причине неправильности формы этих частиц и высокой шероховатости их поверхности.
Использование ППЛ вместо несвязанных ПМ позволяет увеличить толщину слоя, заключенного между сварочным роликом и деталью, в условиях приложения рабочего давления (50 – 75 МПа) для хлопьевидных частиц в 1,1 – 1,5 раза, а для округлых частиц – в 2 – 3 раза. Таким образом, при наличии между частицами порошковых материалов упругого эластичного полимера, прочно соединенного с ними, значительно повышается устойчивость этих частиц к относительному перемещению при сжатии. ППЛ всех исследованных составов и толщин под давлением роликов не разрушаются на отдельные фрагменты, а остаются единым телом.
Увеличению пористости наплавленного слоя способствует рост средних размеров частиц ППЛЖ (режим 2), а так же изменение скорости наплавки ППЛК (режим 3).
Все сказанное о нагреве ПМ при наплавке относится к ППЛ, однако, при этом надо учитывать ряд особенностей. Во время наварки ППЛ нагревается и вокруг наплавляемого участка, полимер в этой зоне подвергается термической деструкции, частицы порошковых материалов оказываются свободными от полимерных связей и уносятся охлаждающей водой. Эти потери составляют 10–15% от массы ППЛ. Кроме того, масса наплавленного слоя меньше массы наплавленной ППЛ на величину, равную массе полимера.
При наварке полимер частично сгорает и образует газы и дым, которые необходимо удалять при помощи, приточно-вытяжной вентиляции. Другая часть полимера выдавливается из зоны сварки в виде кашеобразной массы.
Выделение газов при наварке в некоторых условиях приводит к повышению пористости наплавленного слоя.
Наварка ПМ и ППЛ позволяет получать покрытия различной пористости от 1 до 28%. Поры в покрытиях распределяются неравномерно: наименьшая пористость наблюдается в зонах наибольшего нагрева.
С ростом удельного сварочного тока наблюдается интенсивный рост пористости наплавленного слоя. Аналогичный процесс наблюдается и при наплавке ППЛК (см. таблицу 1, режим 5) с варьируемой длительностью импульса. Таким образом, рост интенсивности и уровня теплового воздействия на ППЛ ведет к увеличению пористости наплавленного слоя. Это явление обусловлено повышением давления газов и наплавляемом слое при увеличении интенсивности тепловыделения. Вместе с тем с повышением содержания полимера от 4 до 8% газовыделение способствует увеличению подвижности частиц порошковых материалов и обеспечивает их более плотную упаковку при наплавке, при этом газы выходят через поры в атмосферу. При более высоком содержании полимера количество выделяющихся газов таково, что они не успевают выходить из наплавляемого слоя и препятствуют замыканию пор.
Усадку (процентное отношение изменения толщины ППЛ после наплавки к исходной толщине) определяли при наплавке ППЛЖ и ППЛК на режиме 7 (см таблицу 1). Установлено, что при изменении плотности ППЛЖ и ППЛК от 2500 до 4500 кг/м3 усадка уменьшается от 59 до 49%, при изменении средних размеров частиц порошка от 0,08 до 0,72 мм усадка увеличивается от 53 до 57%. При плотности ППЛЖ 3500 кг/м3 и размерах частиц порошка 0–0,16 мм изменение содержания полимера от 4 до 12% приводит к увеличению усадки от 53 до 60%, что связано с ростом объема выгорающего полимера. После прохождения через один и тот же участок ППЛ второго и третьего импульсов тока усадка составляет 1–4%.
Эксперименты по определению прочности на срез наплавленного слоя и основного металла показали, что после наплавки с наименьшими значениями давления, удельного тока и длительности импульсов разрушение происходит по поверхности соединения детали и наплавленного слоя, а после наплавки на всех остальных режимах наплавленный слой отделялся с вырывом материала детали.
Металл ЗТВ частично отбеливается и частично закаливается. По мере роста уровня термического воздействия на деталь толщина упрочненного слоя чугуна увеличивается. Разрушение при испытаниях происходило по границе упрочненной зоны. С увеличением сварочного тока от 0,50 до 0,85 кА/мм2 прочность соединения возрастает с 35 до 220 МПа. Дальнейший рост тока приводит к некоторому снижению прочности соединения в связи с тем, что в данных условиях охлаждения при увеличении тепловложения не обеспечивается требуемая для закалки скорость охлаждения.
При наплавке ППЛЖ на режиме 1 (см таблицу 1) увеличение толщины ППЛ от 1,0 до 5,5 мм приводит к росту прочности соединения от 120 до 240 МПа, а при удельной величине сварочного тока 1 кА/мм2 соответственно от 2,2 до
5,5 мм и от 170 до 240 МПа. Рост размеров частиц порошка в ППЛЖ от 0,08 до 0,72 мм ведет к снижению прочности соединения от 240 до 180–190 МПа. Увеличение содержания полимера в ППЛ также снижает прочность соединения.
ППЛ при подготовке и подаче под наварку требует осторожного обращения, так как при изгибе до радиуса кривизны < 10 мм и растяжении со средним напряжением р = 1–3 МПа она растрескивается и разрушается. Вместе с тем, ППЛ легко режется ножом, может содержать любую композицию ПМ и при этом может быть изготовлена с использованием комплекта простых приспособлений.
Серьезной проблемой при наварке ПМ и ППЛ является низкая надежность работы узлов сварочных роликов, подвижные части которых заклинивают на осях от попадания в зазор между ними частиц порошковых материалов. Поэтому узлы сварочных роликов должны быть защищены от попадания частиц порошков в их опоры скольжения. При использовании сухих ПМ дополнительно необходима герметичная система внутреннего охлаждения.
Другим путем связывания частиц ПМ в компактное тело является изготовление порошковых спеченных лент (ПСЛ). При их спекании в печах в течение нескольких часов между контактирующими участками соседних частиц протекают диффузионные процессы, поэтому границы между частицами становятся размытыми. Такой характер границ остается и в наплавленном слое. Пористость ПСЛ составляет 0,5–20%. Пластичность ПСЛ зависит от состава, она снижается с повышением содержания упрочняющих порошковых материалов. При намотке на деталь или установке в полость детали малопластичные ПСЛ растрескиваются. Такие ПСЛ необходимо многократно вальцевать, постепенно приближая радиус гибки к радиусу кривизны поверхности детали, размещать их на поверхности детали как втулки, после чего прихватывать и производить наварку.
Нагрев ПСЛ при наварке и формирование наплавленного слоя происходят так же, как и в случае использования СЛ. Отличие состоит в том, что ПСЛ пористые и поэтому при обжатии имеют заметную усадку, пропорциональную пористости, которая после наварки снижается. При наварке присадочные материалы с материалом детали не перемешиваются.
Недостатки способа ЭКНП и возможности их устранения
Широкое внедрение способа электроконтактного нанесения порошковых материалов сдерживается рядом существенных недостатков [5].
Как известно, дальнейшее увеличение износостойкости материалов при одновременном сокращении расхода легирующих элементов возможно только при широком использовании композиционных материалов, твердая составляющая которых является диэлектриком. Однако по результатам исследований Радомысельского И. Д. и Рыморова Е. В. [8] известно, что критическая концентрация компонентов-диэлектриков не превышает 1-2% от массы. При превышении указанных пределов происходит нарушение стабильности электроконтактного процесса в результате разделения токопроводящих частиц порошкового материала частицами с высоким электрическим сопротивлением. Тем не менее, на практике для обеспечения требуемых эксплуатационных показателей покрытия должны содержать 5-10% и более функциональных наполнителей. Практически нанести покрытия этих составов электроконтактным методом невозможно.
Меры, применяемые в настоящее время для устранения указанного недостатка малоэффективны. Введение высоко- электропроводных компонентов не решает проблемы. Даже введение в шихту меди (до 8% от массы) не позволяет снизить электросопротивление порошка. Регулируя соотношение размеров частиц наполнителя и матрицы можно увеличить содержание диэлектриков в шихте без повышения его критического начального электросопротивления. Однако такое повышение (в среднем до 8% от массы) не позволяет значительно увеличить износостойкость порошкового материала.
Пробой неэлектропроводного порошкового слоя током высокого напряжения приводит к получению высокопористого материала и к необходимости последующей пластической деформации с целью уплотнения покрытия. Использование ультразвуковых и магнитных колебаний, применение электродинамического удара позволяют решать конкретные задачи и значительно усложняют применяемое оборудование.
Следующим существенным недостатком ЭКН порошкового материала является быстрый износ роликов-электродов электроконтактных установок. С помощью ролика-электрода прикладывается давление к уплотняемому и припекаемому порошковому слою. Так как твердые частиц износостойкого материала находятся в непосредственном контакте с роликом-электродом происходит быстрый абразивный износ последнего.
Для устранения указанного недостатка, а также для предотвращения налипания порошка на контактную поверхность роликового электрода между последним и порошковым слоем вводят технологическую латунную ленту толщиной 0,1-0,2 мм, ограничивают давление 30-50 MПa, используют строго заданные режимы наплавки, выполняют электрод из легированной высокопрочной стали. Все эти способы обладают ограниченными технологическими возможностями и резко снижают эффективность электроконтактного способа нанесения покрытий.
При ЭКН возникают трудности с применением ферромагнитных порошков. В результате взаимодействия электрического тока, проходящего по детали, и его магнитного поля с током, проходящим через электрод и слой порошка, и его магнитным полем, происходит выброс ферромагнитного порошка из зоны уплотнения и спекания, в результате чего покрытие формируется с большим количеством пор, наплывами, а коэффициент использования порошка не превышает 0,8. Для устранения подобного явления применяют постоянный электрический ток, используют порошковые материалы в виде паст, предварительное плазменное или газопламенное напыление, применение порошкового материала, заключенного в полиэтиленовую оболочку. Последний способ позволяет также повысить стойкость электрода, предотвращает окисление порошка на первом этапе процесса, дает возможность точно дозировать количество порошка.
С целью повышения прочности соединения порошкового материала с поверхностью детали применяются следующие технологические способы.
Осуществляют двухстадийное формирование и нагрев припекаемого покрытия. При этом первоначально к слою прикладывают удельное давление в пределах 0,05–0,15 МН/м, которое частично уплотняет порошок не вызывая деформации его микровыступов и разрушения окисных пленок. В результате нагрева образуется слой большой пористостью (до 30%). Вторая стадия начинается тогда, когда температура порошка достигает 0,8 Тпл и характеризуется пропусканием тока плотностью 0,25–0,5 кА/мм2 и приложением удельного давления, не превышающего 0,65 МН/м. Получают высокоплотные покрытия с прочностью сцепления 180–200 МПа. Применяют также нанесение покрытия в три стадии, последующую горячую обкатку, специальную подготовку поверхности, нанесение подслоя.
Все эти способы обладают определенными преимуществами и позволяют решать конкретные технологические задачи. Наиболее широкими возможностями обладает способ, основанный на применении порошкового материала, заключенного в полимерную оболочку. Однако полимерная оболочка не является электропроводной, поэтому с целью обеспечения возможности электроконтактной наплавки оболочку армируют частицами шихты. Это несколько снижает стойкость электродов контактных установок. Полимерная оболочка не обладает достаточной прочностью и не предотвращает выдавливание порошка из зоны деформации. Остатки оболочки загрязняют ролик-электрод. Невозможно предварительное изготовление порошкового материала методами порошковой металлургии. Все эти недостатки должны устраняться при применении металлической оболочки. Применение металлической оболочки при формировании порошковых материалов является известным приемом в различных технологических процессах.
Наплавка порошковых материалов в металлической оболочке.
Сущность предлагаемого способа заключается в том, что при помещении порошка в оболочку исключается его контакт с электродом, следовательно, стойкость электрода должна повыситься. Появляется возможность предварительного изготовления порошкового материала для электроконтактной наплавки: его можно уплотнять (протяжкой, прокаткой) или спекать, причем оболочка предохраняет порошок от окисления. Наличие металлической оболочки позволит увеличить количество компонентов с высоким электрическим сопротивлением, так как в этом случае ток протекает по оболочке и нагревает ее до температуры перехода в пластическое состояние; при определенном усилии, прилагаемом к электроду, происходит соединение оболочки с основным металлом, а порошковый материал нагревается теплом, поступающим от оболочки [4]. На рис. 12 показана предлагаемая схема процесса электроконтактной наплавки.
Рис. 12. Схема процесса электроконтактной наплавки порошкового материала, заключенного в металлическую оболочку: 1 – электроды электроконтактной установки; 2 – металлическая оболочка; 3 – порошковый материал; 4 – наплавляемая заготовка; 5 – источник питания
Для подтверждения выдвинутых положений были выполнены следующие опыты.
Производили наплавку порошковым материалом без оболочки и в оболочке. Наплавка порошка без оболочки осуществлялась известным способом. Для наплавки по предлагаемому способу шихту, состоящую из порошков сплава ПГ-С1 и углеродистого феррохрома ФХ800, засыпали в оболочку (имевшую вид трубки диаметром 5 мм) из стали 08кп. Полученную заготовку протягивали до диаметра 4 мм, продували аргоном, герметизировали и вновь протягивали – до диаметра 3 мм. Затем производили электроконтактную наплавку порошкового материала, заключенного в металлическую оболочку, на пластину из стали СтЗ толщиной 10 мм. Исследовали зависимость прочности сцепления от параметров режима (тока Iсв, времени протекания импульса тока tи, длительности паузы между импульсами tп, усилия па электроде Р). Прочность сцепления покрытия с основным металлом определяли путем отрыва штифта приложенной силой по методике [7].
При оптимальных режимах наплавки прочность сцепления порошкового материала, заключенного в металлическую оболочку, в 2–2,5 раза выше, чем порошка без оболочки. При увеличении усилия на электроде в исследованных пределах прочность сцепления покрытия с деталью уменьшается. Это объясняется снижением температуры нагрева в зоне соединения, связанным с деформацией металлической оболочки до включения импульса электрического тока: при этом увеличивается площадь контакта между оболочкой и деталью, уменьшаются электрическое сопротивление контакта и плотность тока.
Проведенные сравнительные испытания с целью определения физико-механических свойств покрытий, полученных при использовании порошковых материалов, заключенных в оболочку и без нее (табл. 2), показали, что в первом случае, вследствие значительного снижения пористости слоя, повышается его твердость и износостойкость. Уменьшению пористости способствует наличие оболочки, которая позволяет предварительно уплотнять порошок в процессе протяжки и, кроме того, создает благоприятное напряженное состояние при наплавке, близкое к состоянию всестороннего сжатия. Значительно возрастает срок службы (стойкость) электродов электроконтактной установки. При наплавке порошка ПГ–С1+ФХ800 в оболочке стойкость электрода из бронзы типа БрХ составляет 200…250 м до переточки против 30...40 м при наплавке порошка того же состава без оболочки. Следовательно, применение металлической оболочки при электроконтактной наплавке с применением известных материалов дает следующие преимущества:
-
повышаются физико–механические свойства наплавленного слоя в результате снижения пористости;
-
увеличивается прочность сцепления покрытия с основой;
-
предотвращается окисление порошкового материала;
-
создается благоприятное напряженное состояние, близкое к всестороннему сжатию;
-
увеличивается срок службы электродов;
-
стабилизируется толщина наплавленного слоя благодаря точной дозировке порошкового материала;
появляется возможность снижения напряжений в наплавленном слое, так как оболочка является своеобразной мягкой прослойкой между основным металлом и покрытием.
С целью определения возможности увеличения количества неэлектропроводных компонентов в шихте было изучено температурное поле при электроконтактной наплавке порошка ПГ–С1+ФХ800 (с различным количеством карбида бора), заключенного в металлическую оболочку.
Таблица 2. Сравнительная характеристика физико–механических свойств покрытий
Наличие оболочки | Материал покрытия | HRC | Пористость,% | сц,, МПа | |
Нет Есть | ПГ–С1 ПГ–С1+50% ФХ800 ПГ–С1 ПГ–С1+30% ФХ800 ПГ–С1+50% ФХ800 | 1,0 2,5 1,5 2,9 3,5 | 50 60 54 59 61 | 5…7 8…10 1…2 1…2 2…3 | 120…140 120…140 280…320 300…320 300…320 |
Примечание. Здесь – относительная износостойкость.
Рис. 13. Температурное поле в начальный (а) и конечный (б) моменты наплавки порошка, заключенного в металлическую оболочку: 1 – электрод электроконтактной установки; 2 – оболочка; 3 – порошковый материал; 4 – основной металл; 5 – источник питания; – места размещения термопар
Температура измерялась с помощью хромель–алюмелевых и платино–платинородиевых термопар. Места расположения термопар показаны на рис. 13. Градуировка термопар проводилась по точке кипения воды (373 К) и температуре плавления свинца (602 К). Регистрация сигнала осуществлялась шлейфовым осциллографом К12–22.
Как видно из рис. 13, в начальный момент электроконтактной наплавки температура в срединной области порошкового материала значительно ниже, чем температура оболочки. Это объясняется низкой электрической проводимостью порошка: практически в данный момент весь ток протекает по металлической оболочке. Однако нагрев порошка теплом, получаемым от оболочки, и уплотнение его усилием, приложенным к электроду, приводит к снижению электрического сопротивления порошкового слоя, его дальнейшему нагреву и уплотнению за счет пластической деформации частиц; происходит выравнивание температуры по сечению порошкового сердечника. Дальнейший нагрев приводит к перегреву последнего, что при неправильно выбранном режиме (большом токе или увеличенной длительности импульса) может вызвать нарушение стабильности электроконтактного процесса, расплавление порошкового материала, прожог и выплеск расплавленного металла.
В табл. 3 приведены физико–механические свойства наплавленного слоя. Увеличение количества карбида бора до 20% приводит к резкому возрастанию пористости, снижению пластических свойств покрытия, а также износостойкости вследствие ухудшения прочности сцепления между частицами порошкового материала (о чем свидетельствует выкрашивание твердой составляющей композиционного слоя при испытаниях на износостойкость).
Таблица 3. Физико-механические свойства наплавленного слоя при различном содержании карбида бора
Материал покрытия | Пористость,% | аН, МДж/м2 | Характеристика поверхности | |
ПС1 (ПГ–С1+50% ФХ800) ПС1+5% В4С ПС1+10% В4С ПС1+20% В4С ПС1+30% В4С | 1,0 1,3 1,6 1,4 0,5 | 2…3 3…5 3…5 5…10 10…12 | 0,59 0,54 0,50 0,42 0,26 | Чистая Чистая Чистая Видны поры Есть трещины |
Очевидно, при введении более 15% карбида бора, получаемый порошковый материал характеризуется высоким электрическим сопротивлением и низкой теплопроводностью и не успевает прогреться за время наплавки, поэтому плохо уплотняется и спекается. Однако наличие оболочки позволило несколько увеличить критическое количество компонентов-диэлектриков (до 15%), при этом электроконтактный процесс сохраняет стабильность на всем протяжении наплавки.
Испытание порошковых материалов.
Методика проведения испытаний порошкового материала на растяжение и сжатие
Целью этих испытаний является определенно предельных напряжений растяжения и сжатия материала напрессованного слоя. В качестве испытуемого материала использовался материал МК-5. Главным вопросом проведения любых испытаний является вопрос, связанный с изготовлением образцов для испытаний. Поскольку испытуемый материал в его неспеченном состоянии отличается низкой прочностью, то вопрос об изготовлении его образцов оказался достаточно сложным. Образцы для, испытаний как на растяжение, так и на сжатие изготавливались в жесткой пресс-форме. Образцы для испытания на сжатие изготавливались путем уплотнения порошкового материала (рисунок 2.25) в полости матрицы. Давление прессования прикладывалось к верхнему пуансону. Выпрессовка образца из полости матрицы осуществлялась с помощью нижнего пуансона. После выпрессовки образцы имели диаметр 25 мм и высоту 25 мм. Необходимая плотность материала образцов достигалась варьированием высотой засыпки порошка Геометрические параметры изготовленных образцов удовлетворяли требованиям, предъявляемым к образцам для испытания порошковых материалов на сжатие /I8/. Испытания изготовленных образцов на сжатие производились
на испытательной машине ИМЧ-30. Предельное напряжение сжатия определялось по силоизмерителю машины в момент разрушения образца. С целью снижения влияния трения между плитами испытательной машины и торцевой поверхностью образца на точность результатов испытаний, торцевые поверхности образца покрывались слоем парафина. Образцы для испытаний на растяжение изготавливались по схеме, изображенной на рисунке 2.27, путом уплотнения порошкового материала в полости матрицы 2, между верхним 3 и нижним 4
Схема изготовления образцов Схема испытания образцов насжа тие
для испытаний на сжатиетие
Схема изготовления образцов для испытания на растяжение.
отрывными элементами. Отрывные элементы изготавливались из компактной стали. Наличие отрывных элементов необходимо для размещения образца в захватах испытательного устройства. Соединение их с испытуемым порошковым материалом осуществлялось с помощью слоя мягкого покрытия, предварительно нанесенного на поверхность отрывного элемента. В качество покрытия использовался слой оловянисто-свинцового припоя ПОС-ІО толщиной 0,2-0,4 мм. Извлечение образца S3 полости матрицы осуществлялось с помощью нижнего пуансона 5. Необходимая плотность материала порошковой части образца достигалась варьированием высотой засыпки порошка H. Геометрические параметры образцов для испытаний порошкового материала на растяжение удовлетворяют международным нормам /39,
Разрыв по слою порошкового материала при испытании образца на растяжение говорит о высоком качестве соединения отрывных элементов с порошковым материалом.
Техническая новизна способа изготовления таких образцов подтверждена положительным решением по заявке на изобретение 403ІІ72/23Ч033766) от 27,05.87 г, Низкие механические свойства неспеченного порошкового материала не позволили применить для испытаний имеющуюся в наличии испытательную технику, поскольку она обладает относительно высокой скоростью нагружения и низкой чувствительностью силоизмерительных приборов.
Поэтому на базе ручного механического пресса Ж-30 (рисунок 2.29) была разработана и изготовлена установка для испытания на растяжение полученных образцов, Червячный механизм перемещения нижней траверсы обеспечивал любую, как угодно малую скорость нагружения образца 2, который закреплялся в захватах 3. Растягивающая нагрузка фиксировалась динамометром чаоового типа 4, а соосность ее приложения обеспечивалась шаровыми шарнирами 5.
Рисунок 2.29
Установка для испытания порошковых материалов на растяжение.
СПИСОК ССЫЛОК
-
А. М. Михед, инж., В. П. Черныш, д–р техн. наук (Национ. техн. ун–т Украины «КПИ») Восстановление размеров и свойств чугунных цилиндрических деталей электроконтактной наваркой проволок //Автоматическая сварка. – 2000. – №3. – с. 42 – 45.
-
С. Ф. Андронов Электроконтактная шовная наварка металлических лент и порошков //Сварочное производство. – 2001. – №12. – с. 25 – 26.
-
С. Ф. Андронов, Б. М. Гарипов Электроконтактная наплавка порошково-полимерных материалов //Сварочное производство. – 2000. – №5. – с. 6 – 7.
-
В. М. Карпенко, В. Т. Катренко, кандидаты техн. наук, В. А. Пресняков, инж. Электроконтактная наплавка с применением порошковых материалов, заключенных в металлическую оболочку //Автоматическая сварка. – 1999. – №5. – с. 56 – 59.
-
В. М. Карпенко, В. Т. Катренко, В. А. Пресняков Электроконтактная наплавка порошковых материалов в металлической оболочке Краматорск.: КИИ, 1999, 126 с.
-
В. К. Ярошевич, Я. С. Генкин, В. А. Верещагин Электроконтактное упрочнение. – Минск.: Наука и техника, 2002, 256 с.
-
Ю. В. Клименко Под редакцией Э. С. Каракозова. Электроконтактная наплавка. Москва.: «Металлургия», 1998, 128 с.
-
И. Д. Радомысельский, Е. В. Рыморов Уплотнение и электросопротивление смесей металлических порошков с неметаллическими при низких давлениях холодного прессования //порошковая металлургия. – 2005. – №7. – с. 70 – 74.