124358 (689985), страница 2
Текст из файла (страница 2)
Рис.4 - Диаграмма скоростей
Рис.5 - Диаграмма ускорений
2. Силовой анализ рычажного механизма
Исходные данные:
Масса кулисы m3=20 кг;
Масса ползуна m5=52 кг;
Сила полезного сопротивления Qпс=1550 Н.
Схема механизма (Рис.6).
Рис.6 - Расчётная схема механизма
2.1 Силы тяжести и силы инерции
Силы тяжести:
Силы инерции:
2.2 Расчёт диады 4-5
Выделяем из механизма диаду 4,5. Нагружаем её силами Q, U5, G5 и реакциями R50, R43.
Под действием этих сил диада 4,5 находится в равновесии.
Уравнение равновесия диады 4,5:
;
Анализ уравнения:
Q=1550H;
U5=130H;
G5=510,12Н.
Уравнение содержит две неизвестные, поэтому графически оно решается.
Выбираем масштабный коэффициент сил:
Вектора сил на плане сил:
Значение сил на плане сил:
;
2.3 Расчёт диады 2-3
Выделяем из механизма диаду 2,3. Нагружаем её силами G3, U3 и реакциями R34 = - R43, R21, R30.
Под действием этих сил диада 2,3 находится в равновесии.
Уравнение равновесия диады 2,3:
Анализ уравнения:
G3 = 196,2 H;
U3 = 25 H;
R34 = 1680 Н.
Уравнение содержит три неизвестные, поэтому составляем дополнительно уравнение моментов сил относительно точки O2 и находим силу R21:
Выбираем масштабный коэффициент сил:
Вектора сил на плане сил:
,
Значение силы на плане сил:
;
2.4 Расчёт кривошипа
Уравнение равновесия кривошипа
Реакция R12 известна и равна по величине, но противоположна по направлению реакции R21.
Уравнение имеет 2 неизвестные.
Выбираем масштабный коэффициент сил:
Значения сил на плане сил:
2.5 Рычаг Жуковского
Строим повёрнутый на 900 план скоростей, прикладываем к нему все внешние силы, действующие на механизм.
Уравнение моментов относительно полюса Pv и определяем Pу:
Погрешность расчёта силы Ру:
2.6 Определение мощностей
Потери мощности в кинематических парах:
Потери мощности на трение во вращательных парах:
где - коэффициент
- реакция во вращательной паре,
- радиус цапф.
Суммарная мощность трения
Мгновенно потребляемая мощность
Мощность привода, затрачиваемая на преодоление полезной нагрузки.
2.7 Определение кинетической энергии механизма
Кинетическая энергия механизма равна сумме кинетических энергий входящих в н его массивных звеньев.
Приведенный момент инерции
2.7.1 Расчёт сил инерции на ЭВМ
Sub Kulis 2 ()
Const H = 0.430
Const L0 = 0.16
Const L1 =0.092
Const a = 0.27
Const m = 0.27
Const Wl = 10,67
i = 2
For fl = 18 * 3.14/180 To 378 * 3.14 /180 Step 30 * 3.14 /180
Cosf3 = L1 * cos (fl) / ( ( (LI ^ 2 + L0 * LI * sin (fl)) ^ (1/2))
U31 = (cosf3 ^ 2) * (LI ^ 2 + L0 * LI * sin (fl)) / (LI ^ 2 * (cos (fl) ^ 2))
T = (LI ^ 2) + L0 * LI * sin (fl)
Q = (LI ^ 2) + (L0 ^ 2) + 2 * L0 * LI * sin (fl)
w3 = Wl * (T / Q)
up31= (L0*LI*cos (fl) * (L0^2 - LI^2)) / ( ( (L0^2) - (LI^2) + 2*L0*LI*sin (fl)) ^2)
e3= (Wl ^2) *up31
sinf3 = (L0 + LI * sin (fl)) / ( (LO ^ 2 + LI ^ 2 +2*LO*L1 * sin (fl)) ^ (1/2))
Up53 = (2 *a * cosf3) / (sinf3 ^ 3)
Ab = (w3 ^ 2) * up53 + e3 * u53
Ub = (Ab * m) /2
Worksheets (l). Cells (8,1 + 1). Value = CDbl (Format (Ub, "Fixed"))
Worksheets (l). Cells (2, i). Value - 1 - 2
I = I + 1
Next fl
Worksheets (l). Cells (2, l). Value = "Ub, H"
Worksheets (l). Cells (l,
1). Value = "Taблица1"
Worksheets (l). Cells (l,
5). Value - "Значения сил инерции Ub, м/с"
End Sub
Таблица 1.5 - Значение сил инерции кулисы 3.
Величина силы инерции, Н | ||||||||||||
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
120, б | 50,6 | 29,1 | 24,7 | -8,3 | -27,9 | -54,9 | -87 | -121,2 | -108,3 | 74,1 | 119,6 | 126 |
Таблица 1.6 - Значение сил инерции кривошипа 5.
Величина силы инерции, Н | ||||||||||||
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
606 | 188,1 | 82,9 | 81,3 | -18,3 | -129,4 | -281 | -514,1 | -560,1 | -436,9 | 254,8 | 607,7 | 606 |
Рис.6 - Диаграмма сил инерции кулисы 3.
Рис.7 - Диаграмма сил инерции ползуна 5.
3. Проектирование зубчатого зацепления. Синтез планетарного редуктора
3.1 Геометрический расчет равносмещенного зубчатого зацепления
Исходные данные:
Число зубьев на шестерне
Число зубьев на колесе
Модуль
Угол профиля рейки
Коэффициент высоты головки зуба
Коэффициент радиального зазора
Суммарное число зубьев колес
Поскольку , то проектируем равносмещенное зубчатое зацепление. Коэффициент смещение
Угол зацепления
Делительное межосевое расстояние
Начальное межосевое расстояние:
Высота зуба:
Высота головки зуба
Высота ножки зуба
Делительный диаметр
Осевой диаметр
Диаметр вершин
Диаметр впадин
Толщина зуба по делительному диаметру
Делительный шаг:
Шаг по основной окружности:
Радиус галтели:
Коэффициент перекрытия:
Погрешность определения коэффициента зацепления:
где ab и p находим из чертежа картины зацепления.
1. Масштабный коэффициент построения картины зацепления.
3.2 Синтез планетарного редуктора
Исходные данные:
Модуль
Частота вращения вала двигателя
Частота вращения кривошипа
Числа зубьев
Знак передаточного отношения - минус
Номер схемы редуктора (рис.8).
Рис.8 - Редуктор
Передаточное отношение простой передачи
Общее передаточное отношение редуктора
Передаточное отношение планетарной передачи
Формула Виллиса для планетарной передачи
5. Передаточное отношение обращенного механизма, выраженное в числах зубьев.
Представим полученное отношение в виде
6. Подбор чисел зубьев
Выбираем числа зубьев:
7. Условие соосности
Условие соосности выполнено
8. Делительные диаметры
,
9. Угловая скорость вала двигателя
10. Линейная скорость точки A колеса z1
11. Масштабный коэффициент Kv
12. Масштабный коэффициент построения плана редуктора
3.3 Определение частот вращения аналитическим методом
1. Определение частот вращения аналитическим методом.
откуда
Знак плюс показывает, что водило вращается в одном направлении с валом
2. Определение частот вращения графическим методом.
Масштабный коэффициент плана частот вращения
Частоты вращения, полученные графическим способом.
Определение погрешностей:
Private Sub CommandButtonl_Click ()
Dim zl, z2, m, ha, C, z5, z6, xl, x2, aw, a, h, hal, ha2, hfl, hf2, dl, d2, dal, da2, dBl, dB2, dfl, df2, SI, S2, P, PB, rf, q As Double zl=CDbl (TextBoxl. Value)
z2 = CDbl (TextBox2. Value) m = CDbl (TextBox3. Value)
ha = CDbl (TextBox4. Value) c = CDbl (TextBox5. Value)
q = CDbl (TextBox6. Value)
ListBoxl. Clear
ListBoxl. Addltem ("Начало отсчета")
ListBoxl. Addltem ("zl=" & zl)
ListBoxl. Addltem ("z2=" & z2)
ListBoxl. Addltem ("m=" & m)
ListBoxl. Addltem ("ha*=" & ha)
ListBoxl. Addltem ("C*=" & C) q = (q* 3.14) /180
ListBoxl. Addltem ("угол-' & q) xl= (17-zl) /17
ListBoxl. Addltem ("xl=" & xl) x2 = - xl
ListBoxl. Addltem ("x2=" & x2) a = m* (zl +z2) /2
ListBoxl. Addltem ("a=" & a) aw=a
ListBoxl. Addltem ("aw=" & aw) h=2.25*m
ListBoxl. Addltem ("h=" & h) ha1=m* (ha+x1)
ListBoxl. Addltem ("ha1=" &ha1) ha2=m* (ha+x2)
ListBoxl. Addltem ("ha2=" &ha2) hf1=m* (ha+c-x1)
ListBoxl. Addltem ("hf1=" &hf1) hf2=m* (ha+c-x2)
ListBoxl. Addltem ("hf2=" &hf2) d1=m*z1
ListBoxl. Addltem ("d1=" &d1) d2=m*z2
ListBoxl. Addltem ("d2=" &d2) dw1=d1
ListBoxl. Addltem ("dw1=" &dw1) dw2 = d2
ListBoxl. Addltem ("dw2=" & dw2) dal =dl +2*hal
ListBoxl. Addltem ("dal=" & dal) da2 - d2 + 2 * ha2
ListBoxLAddltem ("da2=" & da2) dfl = dl - 2 * hfl
ListBoxLAddltem ("dfl=" & dfl) df2 = d2-2*hf2
ListBoxLAddltem ("hf2=" & h£2) dBl=dl*Cos (q)
ListBoxLAddltem ("dBl=" & dBl) dB2 = d2 * Cos (q)
ListBoxLAddltem ("dB2=" & dB2) Sl=0.5*3.14*m + 2*xl * m * Tan (q)
ListBdxl. AddItem ("Sl="&Sl)
S2 = 0.5 * 3.14 *m + 2*x2*m* Tan (q) ListBoxLAddltem ("S2=" & S2)
P = 3.14*m
ListBoxLAddltem ("p=" & P)
pB = p * Cos (q)
ListBoxLAddltem ("pB=" & pB) rf = 0.38 * m
ListBoxLAddltem ("r£=" & rf) End Sub
Private Sub CommandButton2_Click () UserForm 1. Hide
End Sub
Исходные данные