124355 (689982), страница 4
Текст из файла (страница 4)
Наиболее широко распространеными в ткани мозга рецепторами и, соответственно, нейромедиаторами являются некоторые аминокислоты. Центральное место среди них занимает L‑глутаминовая кислота – основной возбуждающий нейромедиатор. Глутаматергические синапсы распространены в коре головного мозга, гиппокампе, полосатом теле и гипоталамусе. Нисходящие глутаматергические пути обнаружены практически во всех структурах головного мозга, проекции которых идут от коры к подкорковым структурам. Выявление глутаматергических связей в головном мозге проводится преимущественно методом физиологической идентификации по. высвобождению нейромедиатора. В последние годы на основе изучения структуры и свойств глутаматных рецепторов появилась возможность визуализации нейрорецепторов глутамата с помощью моноклональных и политональных антител,
Нейрорецепторы глутамата располагаются кластерами на постсинаптической мембране. Выявление глутаматных рецепторов на мембране клеток с помощью иммуногистохимических методов является более надежным способом идентификации глутаматергических связей по сравнению с другими методами.
Нарушение глутаматергической медиации связано с целым рядом патологических состояний нервной системы: эпилепсией, расстройствами вестибулярной системы, ишемическими проявлениями и др. Глутаминовая кислота и некоторые ее аналоги используются в качестве терапевтического лекарственного средства при хронической недостаточности аминокислотного обмена, вегетососудистой дистонии и эпилепсии.
Присутствие в разных структурах мозга ГАМК – первого по значимости тормозного нейромедиатора – показано методами авторадиографии. Топографическое распределение самого радиоактивно меченного нейромедиатора или образующего его фермента – глутаматдекарбоксилазы – в головном мозге неравномерно. К областям, содержащим наиболее высокую концентрацию ГАМК, относятся черное вещество, бледный шар, гипоталамус и мозжечок. Аминокислота содержится преимущественно в сером веществе головного и спинного мозга.
Данные о функциональной роли ГАМК-ергической передачи в головном и спинном мозге постоянно обогащаются новыми фактами. Она принимает участие в регуляции моторной активности, поддержании судорожного порога, формировании эмоционального поведения. ГАМК-ергическая система участвует в осуществлении условных рефлексов, организации процессов обучения и памяти у млекопитающих. При этом она тесно взаимодействует с другими медиаторными системами мозга: дофаминергической, холинергической и глутаматергической.
Имеется очень большое количество данных о вовлечении системы ГАМК в механизмы многих метаболических расстройств нервной системы. Установлено, что нарушения этой системы связаны с прявлениями эпилепсии, хореи Гентингтона, паркинсонизма и некотрых других поражений экстрапирамидной системы. При терапевтическом применении соединений, содержащих эту аминокислоту или ее аналоги, обнаруживаются позитивные клинические эффекты. Имеются данные о благоприятном влиянии производных ГАМК на больных эпилепсией, хореей Гентингтона и паркинсонизмом. Эти же препараты способны усиливать дыхание, энергетический обмен нервной ткани, улучшать показатели мозгового кровообращения и метаболизма глюкозы.
Как упоминалось, методология гистохимического исследования локализации ГАМК или образующего ее фермента – глу-таматдекарбоксилазы – неприменима для выявления других тормозных систем – глицина и таурина и их рецепторов. Анализ их распределения производят, как правило, с использованием методов электрофизиологической регистрации высвобождения нейропередатчика из нервных окончаний при их разнообразной стимуляции.
Глицин и его рецепторы локализованы в зонах моста, продолговатого мозга и серого вещества спинного мозга, включая передние и задние рога. Авторадиографически была установлена локализация участков высокоаффинного захвата глицина преимущественно в аксо-аксональных и аксодевдритных синапсах. Скопление гранул отмечены также вокруг клеточных тел спинальных мотонейронов. У больных с некоторыми врожденными метаболическими аномалиями, связанными с повышением содержания глицина в ткани мозга и крови, может развиваться гиперглицинемия, которая сопровождается симптомами нарушения некоторых психоэмоциональных функций. Полагают, что такие расстройства могут быть следствием поражения обычных путей деградации глицина в нервной клетке.
Интересные данные были получены для таурина. Уровень таурина в разных зонах мозга оказался практически одинаковым, за исключением следующих структур: медиального коленчатого тела, гипофиза и шишковидной железы. Общая концентрация таурина и цистеинсульфонатдекарбоксилазы в спинном мозге и таламических ядрах совпадает с количеством ГАМК в этих структурах, однако локализация их по зонам внутри структур существенно различается. Все исследователи таурина сходятся во мнении о его необычайно высоком содержании в коре мозжечка, которое почти в 5 раз превышает уровень ГАМК в этой структуре. Показано, что таурин локализуется преимущественно в звездчатых нейронах молекулярного слоя. Это позволило предположить существование тауринергических нейронов. Вместе с тем авторадиографическое изучение распределения таурина свидетельствует и о его преимущественно глиальной локализации.
Существует достаточно веские аргументы в пользу того, что таурин является также важным компонентом питания живых организмов, так как он не синтезируется у млекопитающих, включая человека. Клинически тауриновый дефицит может выражаться в эпилептических припадках, наследственной атаксии Фридрейха, зрительной дисфункции, называемой в просторечии «куриной слепотой», и др. Широко обсуждается возможность участия таурина в патогенезе судорожно-пароксизмальных состояний. Выяснилось, что таурин, введеный в желудочки мозга крысы, подверженной судорогам, является более мощным, чем ГАМК, противосудорожным агентом. Однако в клинической практике таурин не проявляет стабильных противосудорожных эффектов и пока не нашел широко применения.
3.7 Характеристики индивидуальных медиаторов
Ацетилхолин
Предшественником АХ. служит холин, потребляемый с пищей. Холин поступает в холинергические нейроны с помощью специфической системы транспорта. Синтез АХ происходит в цитоплазме с участием холинацетилтрансферазы:
Затем АХ поступает в синаптические пузырьки. После экзоцитоза АХ в синаптическую щель он подвергается инактивации с участием ацетилхолинэстеразы:
АХ является преимущественно возбуждающим нейромедиатором, реже – тормозным.
У млекопитающих скопления холинергических нейронов локализуются в следующих отделах мозга: медиальное ядро перегородки, диагональная связка, базальное гигантоклеточное ядро, ядра моста. Аксоны этих нейронов проецируются на гиппокамп, проходят через кору больших полушарий. Холинергические нейроны головного мозга участвуют в таких функциях, как память,
регуляция движения, уровень бодрствования. Холинергические синапсы мозга содержат преимущественно мускариновые рецепторы. В спинном мозге АХ является нейромедиатором в синапсах, образуемых а-мотонейронами на клетках Реншоу. В вегетативной нервной системе АХ служит нейромедиаторм во всех преганглионарных нервных окончаниях симпатической и парасимпатической нервной системы – через посредство никотиновых холинорецепторов; во всех постганглионарных парасимпатических нервах, постганглионарных симпатических нервах потовых желез – через посредство мускариновых холинорецепторов. АХ осуществляет через посредство никотиновых холинорецепторов функцию нейромедиатора в нервно-мышечных синапсах, образуемых соматическими эфферентными нервами в скелетных мышцах. Среди беспозвоночных АХ выявлен в качестве нейромедиатора у плоских и кольчатых червей, у моллюсков.
Моноамины. К моноаминовым медиаторам относятся катехоламины, а также серотонин и гистамин В группу катехоламинов входят норадреналин, адреналин, дофамин, ок-топамин.
Предшественником катехоламинов является L‑тирозин, который организм получает в составе пищи, а также может синтезировать в печени из фенилаланина, потребляемого с пищей. L‑тирозин поступает в нервное окончание посредством активного транспорта. Ниже приведена схема синтеза катехоламинов:
Катехоламины депонируются в оптически плотных крупных синаптических пузырьках. Деградация секретированных катехоламинов происходит с участием моноамино-оксидаз и катехол-О-метилтрансферазы. Инактивация синаптического норадреналина после его экзоцитоза осуществляется также посредством обратного поглощения в нервные окончания, т.е. путем активного трансмембранного транспорта. Норадреналин
Тела норадренергических нейронов в ЦНС млекопитающих находятся в стволе мозга, главным образом в мосте мозга, в продолговатом мозге и ядре одиночного тракта. Многочисленные нейроны голубого пятна образуют диффузные проекции большой протяженности, достигающие практически всех отделов ЦНС – коры больший полушарий, лимбической системы, таламуса, гипоталамуса, спинного мозга.
Нисходящие норадренергические пути спинного мозга участвуют в регуляции мышц-сгибателей и сосудистого тонуса. В вегетативной нервной системе норадреналин является нейромедиатором постганглионарных симпатических нервов. В мозговом слое надпочечников высвобождаются норадреналин и адреналин. В ЦНС норадреналин является в ряде отделов преимущественно тормозным нейромедиатором, например в коре больших полушарий, реже – возбуждающим, например в гипоталамусе.
У беспозвоночных НА отсутствует или имеется в малых количествах. Адреналин
В головном мозге млекопитающих количество адренергических путей является гораздо более ограниченным по сравнению с норадренергическими. Тела нейронов, содержащие фе-нилзтаноламин‑1Ч-метилтранеферазу, находятся в нижних отделах моста и в продолговатом мозге. Нисходящие пути достигают центрального серого вещества и ядер гипоталамуса.
Нейромедиаторная роль адреналина сомнительна; нейромедиатором адренергических нейронов является, очевидно, НА. Адреналин высвобождается диффузно и выполняет роль модулятора.
У беспозвоночных адреналин, так же как и НА, почти отсутствует.
Дофамин
Тела дофаминергических нейронов находятся в среднем мозге, обонятельной луковице, гипоталамусе и перивентрикулярной области продолговатого мозга. Дофаминергические тракты соединяют черную субстанцию с неостриатумом, вентральную покрышку с лимбической системой и с лобной корой, аркуатное ядро гитоталамуса со срединным возвышением. Дофамин служит нейромедиатором амакриновых клеток сетчатки. Дофамин выполняет нейромедиаторную функцию и у беспозвоночных.
Октопамин
Октопамин – нейромедиатор, характерный для беспозвоночных. По отношению к мозгу позвоночных он рассматривается как «ложный медиатор, не опосредующий физиологические эффекты.
Серотонин
Предшественником 5‑НТ является незаменимая аминокислота триптофан, потребляемая с пищей. Синтез 5‑НТ происходит вне секреторных гранул, которые поглощают 5‑НТ с помощью высокоаффинного переносчика:















