124184 (689895), страница 3
Текст из файла (страница 3)
Находим момент крутящий на выходном валу:
Определяем номинальный момент на валах по формуле:
Определим минимальные диаметры валов, допускаемые по прочности по формуле:
Из конструктивных соображений принимаю диаметр первого вала: d=32мм.
Принимаю диаметр второго вала: d=34мм
Принимаю диаметр четвертого вала: d=30мм
Принимаю диаметр пятого вала: d=42мм
Принимаю диаметр третьего вала: d=50мм.
8.1 Уточненный расчет вала
Уточненный расчет выполняем для пятого вала.
Для проверочного расчета строим эпюру нагружения этого вала. Размеры вала определяем исходя из ширины зубчатых колес и ширины подшипников.
Определим силы действующие в зубчатом зацеплении. При расчетной схеме нагружения в зацеплении участвует передача с передаточным отношением i6=1/1,41, параметры зубчатых колес которой приведены в таблице 7.1.
Определяем окружную силу в зацеплении по формуле:
Ft=
H
Определяем радиальную силу:
Fr=Fttgα,
Где α – угол профиля зубьев. α=200
Fr=2458,95∙tg200=894,98 Н.
Рассмотрим данную расчетную схему вала в двух плоскостях: горизонтальной и вертикальной, в которых действуют радиальная и окружная силы.
Рисунок 8.1 – Схема нагружения и эпюры крутящих и изгибающих моментов рассчитываемого вала.
Составим уравнение равновесия вала в вертикальной плоскости.
ΣМАВ=0;
Ft585-RBB618=0;
ΣМBВ=0;
-Ft 33+RAB618=0;
По найденным реакциям строим эпюру изгибающих моментов в вертикальной плоскости.
Составим уравнение равновесия в горизонтальной плоскости.
ΣМАГ=0;
Fr 585 – RBГ 618=0;
ΣМВГ=0;
-Fr 33 + RАГ 618=0;
Н
Суммарный изгибающий момент в опасном сечении вала:
Мизг=
Эквивалентный момент в опасном сечении вала:
Мэкв=
Проверяем диаметр вала в опасном сечении:
dв=10
=
8.2 Расчет вала на усталость
Усталостный расчет вала выполняется как проверочный. Он заключается в определении расчетных коэффициентов запаса прочности в предположительно опасных сечениях.
При расчете принимаем, что напряжения изгиба изменяются по симметричному циклу, а напряжения кручения – по отнулевому циклу.
Амплитудные значения напряжений изгиба и кручения определяются по формулам:
а =
а =
где М – изгибающий момент в сечении; Wнетто – момент сопротивления сечения изгибу, Wкнетто – момент сопротивления сечения кручению;
Момент сопротивления сечения изгибу для сечения со шпоночным пазом определяется по формуле:
Wнетто=
Wнетто=
=10747,05 мм3
Момент сопротивления сечения кручению определяется по формуле:
Wнетто=
Wкнетто =
а =
= 8,036 МПа
а =
= 54,6 МПа
Коэффициенты запаса усталостной прочности определяются по формуле:
-
по нормальным напряжениям
n =
-
по касательным напряжениям
n =
где -1, -1 – пределы выносливости для стали 40, определяется по таблице 7 [5, с. 11],
-1 = 340 МПа, -1 = 200 МПа;
, - коэффициенты, учитывающие влияние абсолютных размеров вала, определяются по таблице 15 [5, с. 11], = = 0.81;
(к)d, (к)d – коэффициенты концентрации напряжений при изгибе и
кручении с учетом влияния шероховатости поверхности;
- коэффициент упрочнения поверхности, = 1 – при улучшении;
а, а – напряжения изгиба и кручения;
, - коэффициенты, характеризующие чувствительность материала к асимметрии цикла напряжений, определяется по таблице 9 [5, с. 11],
= 0.05, = 0;
m = 0;
m = а.
Коэффициенты концентрации напряжений при изгибе и кручении с учетом влияния шероховатости поверхности определяются по формулам:
(к)d = к +
-1
(к)d = к +
- 1
где к, к - эффективные коэффициенты концентрации напряжений, определяются по таблице 18 [5, с. 31], к= 1,6, к = 2,45;
,
- коэффициенты влияния шероховатости поверхности,
определяются по таблице 20 [5, с. 32],
=
= 1.
Определяем (к)d:
(к)d = 1,6 + 1 – 1 = 1,6
Определяем (к)d:
(к)d = 2.45 + 1 –1 = 2,45
определяем n:
n =
=20,5
Определяем n:
n =
= 6,227
Общий запас прочности определяется по формуле:
n =
n =
= 5,95
n≥[n]=1.5…2.5, т. е. условие выполняется.
9. ВЫБОР ЭЛЕМЕНТОВ ПЕРЕДАЮЩИХ КРУТЯЩИЙ МОМЕНТ
К элементам передающим крутящий момент относят детали в соединениях зубчатых колес с валами, передающие крутящий момент, и электромагнитные муфты.
В качестве сединительных элементов в соединении зубчатых колес с валами принимаем шпоночные и шлицевые соединения.
Для блока шестерен Z1 Z3 Z5 расположенного на первом валу выбираем размеры шлицев: D=6x26x32
Для блока шестерен Z17 Z19 расположенного на втором валу выбираем размеры шлицев: D=6x26x32
Для блока шестерен Z11 Z13 Z15 расположенного на пятом валу выбираем размеры шлицев: D=8x36x42
Для зубчатых шестерен Z2 Z4 Z6 на втором валу диаметром 25мм шпонки имеют следующие размеры:
bxhxl=8x7x28мм, t1=4мм, t2=3.3мм
для шестерни Z8 и Z9 на четвертом валу:
bxhxl=8x7x28мм, t1=4мм, t2=3.3мм
для шестерни Z10 на пятом валу:
bxhxl=12x8x28мм, t1=5мм, t2=3.3мм.
для крепления зубчатых колес Z12 Z14 Z16 Z18 Z20 на третьем валу:
bxhxl=14x9x36мм t1=5.5мм, t2=3.8мм
Проверяем выбранные шпонки на прочность.
Шпонки подлежат проверке на смятие, которая проводится по формуле:
см =
[см]
где Мкр –крутящий момент на валу, принимается согласно таблицы 1.2;
d – диаметр вала; h – высота шпонки; lр – рабочая длина шпонки; [см] – допускаемые напряжения смятия для материала шпонки, для стали [см] = 150 МПа.
Рабочая длина шпонки определяется по формуле:
lр = lшп – b
где lшп – длина шпонки; b – ширина шпонки.
- для шпонки 8x7x28 ( вал 2;4)
lр = 28 – 8 = 20 мм
см =
=16,6 150 Мпа
-
для шпонки 12x8x36 ( вал 5)
lр = 36 – 12 = 24 мм
см =
=116,5 150 Мпа
-
для шпонки 14x9x36 (вал 3)
lр = 36 – 14 = 22 мм
см =
= 133,1 150 Мпа
Все выбранные шпонки соответствуют условию прочности при проверке на смятие.
Выбранное шлицевое соединение проверяется на смятие рабочих поверхностей шлицев по формуле:
де -
- коэффициент, который учитывает неравномерное распределение нагрузки между шлицами (обычно принимают 0,75);
D, d, z – размеры сечения соединения (внешний, внутренний диаметры и количество шлицев); f – размер фаски по длине шлица, мм; lp – рабочая длина шлицев
, мм; [
зм] – напряжение смятия, которое допускается, 15МПа (табл. 7.2).
Рабочая длина шлицев определяется конструкцией соединений и чаще всего равняется длине ступицы детали, которая монтируется.
Для первого вала D=6x26x32:
Для второго вала D=6x26x32:
Для пятого вала D=8x36x42
Все выбранные шлицы соответствуют условию прочности при проверке на смятие.
10. ВЫБОР ПОДШИПНИКОВ
Для выбора подшипников опор валов определяем диаметры шипов валов, которые определяются по формуле:
dш=(0,8…0,9) dв
dшI=(0,8…0,9) 20=16…18мм
dшII=(0,8…0,9)25=20…22,5мм
dшIII=(0,8…0,9)50 =40…45мм
dшIV=(0,8…0,9)30=24…27мм
dшV=(0,8…0,9)40=32…36мм
Учитывая элементы расположенные на валах а также по полученным диаметрам шипов, выбираем подшипники, параметры которых сносим в таблицу 12.1.
Таблица 10.1 – Параметры подшипников на валах коробки подач.
| № вала | Подшипник | Внутренний диаметр d, мм | Наружый диаметр D, мм | ширина кольца B, мм | статическая грузоподъе мность C0,кН | Динамическая Грузоподъе мность C |
| 1 | 46205 | 25 | 52 | 15 | 8,34 | 15,700 |
| 2 | 46205 | 25 | 52 | 15 | 8,34 | 15,700 |
| 3 | 46209 | 45 | 85 | 19 | 23,1 | 38,700 |
| 4 | 46205 | 25 | 52 | 15 | 8,34 | 15,700 |
| 5 | 46207 | 35 | 72 | 17 | 16,4 | 29,000 |
11. ОПРЕДЕЛЕНИЕ СИСТЕМЫ СМАЗКИ
Смазочная система станка служит для подачи смазочного материала ко всем трущимся поверхностям.
Существует несколько схем подвода смазочного материала к трущимся поверхностям. Индивидуальная схема служит для подвода смазочного материала к одной смазочной точке, централизованная к нескольким точкам. В нераздельной схеме нагнетательное устройство присоединено к смазочной точке постоянно, в раздельной оно подключается только на время подачи смазочного материала. В проточной системе жидкий или пластичный материал используется один раз. В циркуляционной системе жидкий материал подается повторно. В системах дроссельного дозирования объем смазочного материала , подаваемого к смазочной точке регулируется дросселем. В системах объемного дозирования могут регулироваться не только доза, но и частота подачи. В комбинированных системах могут быть предусмотрены объемное и дроссельное регулирование одно- и двухматериальные питатели. Системы с жидким смазочным материалом в зависимости от способа его подачи к поверхностям трения могут быть разбрызгивающими, струйными, капельными, аэрозольными.
Для смазки данного станка принимаем импульсную смазочную систему, в которой смазочный материал ко всем поверхностям трения подается одновременно. Схема импульсной системы приведена на рисунке 13.1, где 1 – указатель уровня смазочного материала; 2 – приемный фильтр; 3 – насос; 4 – фильтр напорной магистрали; 5 – манометр; 6 – смазочный дроссельный блок с ротаметрическими указателями; 7 – реле расхода смазочного материала; 8 – точки смазывания; 9 – указатель потока; 10 – точки смазывания с форсункой; 11 – точки смазывания; 12 – смазочный дроссельный блок; 13 – сливной магнитосетчатый фильтр; 14 – предохранительный клапан;15 – реле уровня; 16 – фильтр; 17 – резервуар.
















