124150 (689866), страница 2

Файл №689866 124150 (Расчет двухступенчатого редуктора) 2 страница124150 (689866) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

[SH] = 1,1; ( при улучшении);

Н]2 = 566·0,9·0,896 / 1,1 = 415 МПа.

Так как [σН]1=465 МПа > [σН]2=415 МПа, то за расчетное допускаемое напряжение [σн]Р принимаем [σН]1=465 МПа, т.е [σн]РТ = 465.

Определение ориентировочного значения межосевого расстояния

Определяют ориентировочное значение межосевого расстояния из условия сопротивления контактной усталости активных поверхностей зубьев, мм

,где

Т1 – вращающий момент на шестерне;

Ка - вспомогательный коэффициент, равный 495 для прямозубых и 430

для косозубых и шевронных передач со стальными колесами;

КНβ -коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий(в учебных проектах можно определить приближенно по таблице 2.3) /8/;

Ψba - предварительное значение коэффициента ширины венца относительно межосевого расстояния:

,где

Ψbd - предварительное значение коэффициента ширины венца относительно диаметра, задают по таблице 2.2 /8/

Ψbd = 0,6 … 1,2 - при несимметричном расположении колеса относительно опор и твердости поверхности зубьев < 350 НВ, принимаем Ψbd = 1, тогда КНβ = 1,04

,

Определяют числа зубьев колес

Z1= Ψbm/ Ψbd ≥ Z1 min, Z2 = Z1·u ≥ Z2 min , где

Ψbm - коэффициент ширины венца относительно модуля зубьев, задают потаблице 2.2 /8/:

Ψbm = (25…30) принимаем Ψbm = 25

Z1 min - наименьшее число зубьев, свободное от подрезания номинальной исходной производящей рейкой

,где

Х - коэффициент смещения исходного контура, при учебном проектировании X задается равным нулю;

αt - угол профиля в торцовом сечении, град

, где

α= 20 - угол профиля исходного контура по ГОСТ 13755-81

= 25 / 1 = 25 ≥ Z1 min=17, Z2 = 25 · 1,7 = 42,5 ≥ Z2 min=17

Уточняем значение передаточного числа u = Z2 / Z1 = 43/25=1,72

Определяем делительный нормальный модуль зубьев, мм

,где

αwt – угол зацепления, град.

αwt = αt =α = 20° при Х12 = 0 и β=0

Округляют модуль до ближайшего стандартного (таблица 2.4)/8/. По ГОСТ 9563-60 принимаем m = 4,5.

Уточняем значение межосевого расстояния при стандартном модуле, с точностью до сотых долей мм:

, принимаем аw = 160

Округляем межосевое расстояние по ГОСТ 2185-66 aw = 160 мм.

Уточняем значение коэффициента ширины зубчатого венца:

Ψ = Ψ’(а’w/ аw)3 = 0,741 · (143,343/160)3 = 0,533

Определяют рабочую ширину венца зубчатой передачи и округляют до целого числа, мм:

bw = аw · Ψ = 0,533 · 160 = 85,3 ≈ 85

Определяют геометрические и кинематические параметры передачи:

-делительные диаметры, мм:

d1 = m · Z1 = 4,5·25=112,5, d2 = m · Z2 = 5·43=193,5,

-начальные диаметры, мм:

dwl = 2aw·Z1/ (Z1+ Z2)=117,65, dw2 = 2aw·Z2/ (Z1+ Z2)=202,35,

-диаметры впадин, при нарезании реечным инструментом, мм:

df1 = d1 - 2m·(1,25 – X1) = 101,25, df2 = d2 - 2m · (l,25 - X2) = 182,25;

-диаметры вершин, из условия постоянства радиальных зазоров, мм

da1 = 2aw - df2 - 0,5m = 135,5, da2 =2aw - df1 - 0,5m = 216,5;

- коэффициент торцового перекрытия (по приближенной формуле):

-осевой шаг зубьев, мм Рх = π· m /sinβ = 0;

-коэффициент осевого перекрытия εβ = bw/Px (при β=0 εβ=О);

-суммарный коэффициент перекрытия εγ = εα + εβ = 1,69;

- основной угол наклона линии зуба, град βb= arcsin (sinβ · cosα) = 0;

- окружные скорости колес на начальных цилиндрах, м/с:

Назначаем степень точности передачи по ГОСТ 1643-81.

Для редукторов общего назначения при современном уровне развития техники экономически оправданы седьмая (нормальная) и восьмая (пониженная) степени точности, в т.ч. и степени точности по нормам плавности работы. При назначении степени точности необходимо учесть ограничение по окружной скорости колес. Передачи восьмой степени точности могут эксплуатироваться при скорости V не более 6 м/с - для прямозубых колес и не более 10 м/с -для косозубых. Передачи седьмой степени точности при скорости V не более 10 м/с - для прямозубых колес и не более 20 м/с - для косозубых.

2.1.2 Проверочный расчет на сопротивление контактной усталости активных поверхностей зубьев

Определяем расчетное контактное напряжение в полюсе зацепления, МПа:

, где

Ze - коэффициент, учитывающий механические свойства материалов колес:

Для стальных материалов, при Е = 2,1 · 105 МПа и υ = 0,3, ZE = 190;

Zh - коэффициент, учитывающий форму сопряженных поверхностей зубьев в полюсе зацепления (влияние радиусов кривизны поверхностей) и переход от нормальной силы на начальном цилиндре к окружной на делительном):

Zh= ,

Zh = 2,5 при β = 0 и Х1 = Х2 = 0

Zε - коэффициент, учитывающий суммарную длину контактных линий:

Zε= при β=0 и εβ=0, Zε= ;

Zε= при β 0 и εβ<1;

Ft - окружная сила на делительном цилиндре в окружном сечении:

Ft = 2000·Т1/d1 = 2000·323,12/112,5 = 5744,4 Н;

КН- коэффициент нагрузки при расчете по контактным напряжениям:

КН = КНβ · КА · КНV · КНα , где

КА - коэффициент, учитывающий внешнюю динамическую нагрузку (неучтенную в циклограмме нагружения). КА = 1, т.к. в заданиях на курсовое проектирование привода мощность на выходном валу привода задана с учетом динамической составляющей внешней нагрузки;

КНβ - коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий. Для цилиндрических передач определяют по таблице 2.3 /8/, при фактическом значении ψbd=bw/dw1

Ψbd = 0,7225, тогда КНβ = 1,05 – (0,8 – 0,7225)·0,02/0,2 = 1,04225;

КНα -коэффициент, учитывающий распределение нагрузки между зубьями. КНα= 1 для прямозубых передач. Для косозубых передач при учебном проектировании можно принять КНα ≈ 1,35;

Khv- коэффициент, учитывающий внутреннюю динамическую нагрузку, возникающую в зацеплении:

, где

WHV - удельная окружная динамическая сила, Н/мм:

,где

δН - коэффициент, учитывающий влияние твердости поверхностей зубьев и вида зубчатой передачи, определяют по таблице 2.5 /8/:

δН = 0,06 для прямозубой передачи и твердости зубьев < 350 НВ;

δН = 0,02 для косозубой передачи и твердости зубьев < 350 НВ;

go - коэффициент, учитывающий влияние разности шагов зубьев шестерни и колеса, определяют по таблице 2.6 /8/:

go = 5,6 для 8 степени точности и модуле < 3,55;

go = 6,1 для 8 степени точности и модуле 3,55…10;

go = 4,7 для 7 степени точности и модуле < 3,55;

go = 5,3 для 7 степени точности и модуле 3,55…10;

,

,

КН = 1,082 · 1 · 1,04225· 1 = 1,13

Уточняем коэффициенты Zr, Zx, Zv, которые при проектировочном задавались приближенно и определяем уточненное значение расчетного допускаемого контактного напряжения, МПа:

В редукторах общего назначения параметр шероховатости боковых поверхностей зубьев рекомендуется назначать: Ra < 3,2 мкм при 8 степени точности передачи и Ra < 1,6 мкм при 7 степени, принимаем Ra = 3,2:

ZR = 0,90 при Ra св. 2,5 до 10.0 мкм;

ZX = 1 - при d<700мм;

ZV =1 - при V<5м/с;

Проверяют сопротивления активных поверхностей зубьев контактной усталости

σн ≤1,05·[σн]РУТ, 432,2 < 488,25 - условие выполняется.

2.1.3 Проверочный расчет на сопротивление усталости зубьев при изгибе

Определяем напряжения изгиба в опасных сечениях на переходных поверхностях зубьев шестерни и колеса, МПа:

, где

b - ширина венца зубчатого колеса, мм. В цилиндрических передачах:

b2 = bw = 85 мм, b1 = bw + (3...4) = 45 + 4 = 89 мм;

YF - коэффициент, учитывающий форму зуба и концентрацию напряжений. Определяют по таблице 2.8 /8/: для косозубых и шевронных цилиндрических колес - по числу зубьев эквивалентного колеса Zv = Z/cos3 β:

YF = 3,9 при Z1 = 25 и Х1 = 0;

YF = 3,65 + (50 - 43)·0,05/10 = 3,685 при Z2 = 43 и Х1 = 0;

Yβ- коэффициент, учитывающий влияние наклона зуба:

Yβ =l - εβ · β / 1200 >0,7, Yβ =l;

Yε - коэффициент, учитывающий влияние перекрытия зубьев:

Yε = 1 для прямозубых передач. Для косозубых:

Yε = 0,2 + 0,8/εα при εβ < 1;

Yε =1/ εα при εβ ≥ 1;

KF- коэффициент нагрузки при расчете на изгиб :

Kf =Ка ·Kfv ·K ·К,

где KFV – коэффициент, учитывающий внутреннюю динамическую нагрузку, возникающую в зацеплении при расчете на изгиб:

К - коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий. Определяют по таблице 2.3 - для цилиндрической передачи /8/:

Ψbd = 0,7225 К = 1,1 – (0,8 – 0,7225)·0,02/0,2 = 1,0923;

KFa- коэффициент, учитывающий распределение нагрузки между зубьями:

KFa = 1 для прямозубых передач.

KFa==1,35 для косозубых передач;

, где

WFV - удельная окружная динамическая сила при расчете на изгиб, Н/мм:

,где

δF - коэффициент, учитывающий влияние вида зубчатой передачи:

δF =0,16-для прямозубых передач;

δF =0,06-для косозубых и шевронных./8/:

go - коэффициент, учитывающий влияние разности шагов зубьев шестерни и колеса, определяют по таблице 2.6 /8/:

go = 5,6 для 8 степени точности и модуле < 3,55;

go = 6,1 для 8 степени точности и модуле 3,55…10;

,

,

Kf =1 · 1,22 · 1,0923· 1 = 1,333

2.1.4 Проектировочный расчет на сопротивление усталости зубьев при изгибе

Определяют допускаемое напряжение изгиба, не вызывающее усталостной поломки зуба, МПа

где: σ0Flimb – предел выносливости зубьев при изгибе, соответствующий базовому числу циклов напряжений, МПа:

σ0Flimb1 = 1,75ННВ = 1,75 ·285 = 498,75 ;

σ0Flimb2 = 1,75ННВ = 1,75 ·248 = 367,04 ;

[SF] – минимальный коэффициент запаса прочности:

[SF] = 1,7;

YR – коэффициент, учитывающий шероховатость переходной поверхности

YR = 1 для неполированных поверхностей;

YХ – коэффициент, учитывающий размеры зубчатого колеса

YХ1 = 1.05 - 0.000125 ∙ d = 1,05 - 0.000125 ∙ 112,5 = 1,036

YХ2 = 1.05 - 0.000125 ∙ d = 1,05 - 0.000125 ∙ 193,5 = 1,026

YА – коэффициент, учитывающий влияния двухстороннего приложения нагрузки :

YА = 1 при одностороннем приложении;

YZ – коэффициент, учитывающий способ получения заготовки зубчатого колеса:

YZ = 1 для поковок и штамповок;

Yg – коэффициент, учитывающий влияния шлифования переходной поверхности зуба:

Yg = 1 при улучшении – если переходная поверхность зубьев не шлифуется;

Yd – коэффициент, учитывающий влияние деформационного упрочнения или электрохимической обработки переходной поверхности:

Yd = 1 – если переходная поверхность зубьев не подвергается деформационному упрочнению или электрохимической обработке;

YN – коэффициент долговечности:

, причём 1 ≤ YN ≤ YNmax

где: NFlimb – базовое число циклов напряжений; NHlimb = 4 ∙ 106;

qF – показатель степени кривой усталости при расчёте на сопротивление усталости при изгибе (для стальных колес с нешлифованной переходной поверхностью:

qF = 6 – для колес с термообработкой – улучшение, нормализация, объемная закалка, закалка ТВЧ зубьев с модулем m ≤ 3 мм;

qF = 9 – для колес с термообработкой – улучшение, нормализация, объемная закалка, закалка ТВЧ зубьев с модулем m >3 мм;

YNmax – предельное значение YN:

YNmax = 4 при qF = 6;

YNmax = 25 при qF = 9;

NFE – эквивалентное число циклов изменения контактных напряжений :

N= NK ∙ μH

где: NK – число циклов напряжений в течение отработки заданного ресурса передачи:

N K = 60 ∙ Lh ∙ n ∙ j;

μH – коэффициент, учитывающий форму циклограммы нагружения (при постоянном режиме μH = 1);

Lh – долговечность в часах,

n – частота вращения вала,

j – число вхождений в зацепление за один оборот колеса.

1) Для ведущего колеса:

Н1 = 285 HB (Сталь 40X «Улучшение»)

NK1 = 60 ∙ 16704 ∙ 254 ∙ 1 = 254,6 ∙ 106;

μН =1; ( при постоянном режиме нагружения);

NHE = NK;

qF = 9; ( при улучшении зубьев с модулем m > 3 мм);

YNmax = 2,5; (при qF = 9);

NFlimb = 4 ∙ 106;

;

Yd = 1; Yg = 1; YZ = 1; YА = 1;

d = 112,5 мм:

YХ1 = 1.05 - 0.000125 ∙ d = 1,05 - 0.000125 ∙ 112,5 = 1,036;

YR = 1; [SF] = 1,7;

F]1 = 498,75 ∙ 0,813 ∙ 1 ∙ 1 ∙ 1,04844 ∙ 1 ∙ 1 ∙ 1/ 1,7 = 247,1МПа.

Так как σF1 = 75 < [σF]1 = 247,1, МПа, то условие прочности для данной конструкции выполняется.

2) Для ведомого колеса:

Н1 = 248 НB (Сталь 40X «Улучшение»).

NK2 = 60 ∙ 16704 ∙ 150 ∙ 1 = 150,34 ∙ 106;

μН =1; ( при постоянном режиме нагружения);

NHE = NK;

qF = 9; ( при улучшении зубьев с модулем m > 3 мм);

YNmax = 2,5; (при qF = 9);

NFlimb = 4 ∙ 106;

Yd = 1; Yg = 1; YZ = 1; YА = 1;

d = 193,4 мм:

YХ2 = 1.05 - 0.000125 ∙ d = 1,05 - 0.000125 ∙ 193,5 = 1,026;

YR = 1; [SF] = 1,7;

F]2 = 367,04∙ 1,06 ∙ 1 ∙ 1 ∙ 1,026 ∙ 1 ∙ 1 ∙ 1/ 1,7 = 234,13 МПа

Так как σF2 = 73,8 < [σF]2 = 234,14 МПа, то условие прочности для данной конструкции выполняется.

2.2 Расчет быстроходной ступени

1) Для шестерни:

Н1 = 285 HB (Сталь 45 «Улучшение»).

Расчёты:

σHlimb = 2·285+70=640 МПа

NK1 = 60 ∙ 16704 ∙ 482,333 ∙ 1 = 483,4 ∙ 106;

μН =1; ( при постоянном режиме нагружения);

NHE = NK;

ZNmax = 2,6; ( при улучшении);

NHlimb = 30 ∙ (285)2,4 = 23.4 ∙ 106 ≤ 120 ∙ 106;

Так как NHE > NHlimb , то принимаем qH = 20;

[SH] = 1,1 ( при улучшении);

Н]1 = 640 ∙ 0,86 ∙ 0,9/ 1,1 = 450,33 МПа.

2) Для ведомого колеса:

Н2 = 248 НВ (Сталь 40Х «Улучшение»).

Расчёты:

σHlimb = 2·248 + 70 = 566 МПа;

NK2 = 60 ∙ 16704 ∙ 254 ∙ 1 = 254,6 ∙ 106;

μН = 1; ( при постоянном режиме нагружения);

NHE = NK;

ZNmax = 2,6; ( при улучшении);

NHlimb = 30 ∙ (248)2,4 = 16,7 ∙ 106 ≤ 120 ∙ 106;

Так как NHE > NHlimb , то принимаем qH = 20;

[SH] = 1,1; ( при улучшении);

Н]2 = 566·0,9·0,873 / 1,1 = 404,3 МПа.

Н]1= 450,33 МПа

Для косозубых [σн]Р =0,45([σн]1 + [σн]2)=, 0,45(450,33 + 404,3) = 384,6 т.е [σн]РТ = 384,6 МПа

Расчет закрытой цилиндрической передачи при вписывании в заданное межосевое расстояние:

Предварительно задавшись значением КНβ = 1.1 определяем ψЬа:

Определяем ψ'bd = 0,5 ψ’ba · (u + l) = 0,5 · 0,331 · (1,9 + l) = 0,48

Сравниваем ψ'bd c рекомендованными значениями в таблице 2.2 /8/. Значение ψ'bd должно быть меньше или равно рекомендованным, ψ'bd меньше рекомендованных значений, условие выполняется.

Ψbm = (25…30) принимаем Ψbm = 25.

Определяем рабочую ширину венца передачи и округляют до целого, мм

bw =aw · ψ' = 160 · 0,331 = 52,96 мм ≈ 53 мм.

Определяем модуль и округляем до ближайшего стандартного :

m = bw / Ψbm = 53/25 = 2,12 ≈2

Определяем суммарное число зубьев колес:

Определяем Z1 = Z / (u +1) = 150 / (1,9 + 1) = 51,7 и Z2 = Z1 · u = 51,7 ·1,9 = 98,23 ≈ 98 и округляем их до ближайших целых чисел Z1 = 52 и Z2 = 98.

Уточняем межосевое расстояние, мм:

В соосных редукторах межосевые расстояния тихоходной и быстроходной ступеней должны совпадать до сотых долей миллиметров. Расхождение ликвидируем корректировкой β :

Определяют геометрические и кинематические параметры передачи:

-делительные диаметры, мм:

d1 = m · Z1 = 2·52=104, d2 = m · Z2 = 2·98=196,

-начальные диаметры, мм:

dwl = 2aw·Z1/ (Z1+ Z2)=111, dw2 = 2aw·Z2/ (Z1+ Z2)=209,

-диаметры впадин, при нарезании реечным инструментом, мм:

df1 = d1 - 2m·(1,25 – X1) = 99, df2 = d2 - 2m · (l,25 - X2) = 191;

-диаметры вершин, из условия постоянства радиальных зазоров, мм

da1 = 2aw - df2 - 0,5m = 128 мм, da2 =2aw - df1 - 0,5m = 220;

- коэффициент торцового перекрытия (по приближенной формуле):

-осевой шаг зубьев, мм Рх = π· m /sinβ = 3,14 · 2/ sin 20,37 = 18,042;

-коэффициент осевого перекрытия εβ = bw/Px = 53/18,042 = 2,94;

-суммарный коэффициент перекрытия εγ = εα + εβ = 4,614;

- основной угол наклона линии зуба, град βb= arcsin (sin20,37 · cos20) = 19,1;

- окружные скорости колес на начальных цилиндрах, м/с:

- αt - угол профиля в торцовом сечении, град

Назначаем степень точности передачи по ГОСТ 1643-81.

Для редукторов общего назначения при современном уровне развития техники экономически оправданы седьмая (нормальная) и восьмая (пониженная) степени точности, в т.ч. и степени точности по нормам плавности работы. При назначении степени точности необходимо учесть ограничение по окружной скорости колес. Передачи восьмой степени точности могут эксплуатироваться при скорости V не более 6 м/с - для прямозубых колес и не более 10 м/с -для косозубых.

2.2.2 Проверочный расчет на контактную выносливость

Характеристики

Тип файла
Документ
Размер
14,5 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее