124150 (689866), страница 2
Текст из файла (страница 2)
[SH] = 1,1; ( при улучшении);
[σН]2 = 566·0,9·0,896 / 1,1 = 415 МПа.
Так как [σН]1=465 МПа > [σН]2=415 МПа, то за расчетное допускаемое напряжение [σн]Р принимаем [σН]1=465 МПа, т.е [σн]РТ = 465.
Определение ориентировочного значения межосевого расстояния
Определяют ориентировочное значение межосевого расстояния из условия сопротивления контактной усталости активных поверхностей зубьев, мм
Т1 – вращающий момент на шестерне;
Ка - вспомогательный коэффициент, равный 495 для прямозубых и 430
для косозубых и шевронных передач со стальными колесами;
КНβ -коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий(в учебных проектах можно определить приближенно по таблице 2.3) /8/;
Ψ’ba - предварительное значение коэффициента ширины венца относительно межосевого расстояния:
Ψ’bd - предварительное значение коэффициента ширины венца относительно диаметра, задают по таблице 2.2 /8/
Ψ’bd = 0,6 … 1,2 - при несимметричном расположении колеса относительно опор и твердости поверхности зубьев < 350 НВ, принимаем Ψ’bd = 1, тогда КНβ = 1,04
Определяют числа зубьев колес
Z1= Ψbm/ Ψ’bd ≥ Z1 min, Z2 = Z1·u ≥ Z2 min , где
Ψbm - коэффициент ширины венца относительно модуля зубьев, задают потаблице 2.2 /8/:
Ψbm = (25…30) принимаем Ψbm = 25
Z1 min - наименьшее число зубьев, свободное от подрезания номинальной исходной производящей рейкой
Х - коэффициент смещения исходного контура, при учебном проектировании X задается равным нулю;
αt - угол профиля в торцовом сечении, град
α= 20 - угол профиля исходного контура по ГОСТ 13755-81
= 25 / 1 = 25 ≥ Z1 min=17, Z2 = 25 · 1,7 = 42,5 ≥ Z2 min=17
Уточняем значение передаточного числа u = Z2 / Z1 = 43/25=1,72
Определяем делительный нормальный модуль зубьев, мм
αwt – угол зацепления, град.
αwt = αt =α = 20° при Х1+Х2 = 0 и β=0
Округляют модуль до ближайшего стандартного (таблица 2.4)/8/. По ГОСТ 9563-60 принимаем m = 4,5.
Уточняем значение межосевого расстояния при стандартном модуле, с точностью до сотых долей мм:
Округляем межосевое расстояние по ГОСТ 2185-66 aw = 160 мм.
Уточняем значение коэффициента ширины зубчатого венца:
Ψbа = Ψ’bа(а’w/ аw)3 = 0,741 · (143,343/160)3 = 0,533
Определяют рабочую ширину венца зубчатой передачи и округляют до целого числа, мм:
bw = аw · Ψbа = 0,533 · 160 = 85,3 ≈ 85
Определяют геометрические и кинематические параметры передачи:
-делительные диаметры, мм:
d1 = m · Z1 = 4,5·25=112,5, d2 = m · Z2 = 5·43=193,5,
-начальные диаметры, мм:
dwl = 2aw·Z1/ (Z1+ Z2)=117,65, dw2 = 2aw·Z2/ (Z1+ Z2)=202,35,
-диаметры впадин, при нарезании реечным инструментом, мм:
df1 = d1 - 2m·(1,25 – X1) = 101,25, df2 = d2 - 2m · (l,25 - X2) = 182,25;
-диаметры вершин, из условия постоянства радиальных зазоров, мм
da1 = 2aw - df2 - 0,5m = 135,5, da2 =2aw - df1 - 0,5m = 216,5;
- коэффициент торцового перекрытия (по приближенной формуле):
-осевой шаг зубьев, мм Рх = π· m /sinβ = 0;
-коэффициент осевого перекрытия εβ = bw/Px (при β=0 εβ=О);
-суммарный коэффициент перекрытия εγ = εα + εβ = 1,69;
- основной угол наклона линии зуба, град βb= arcsin (sinβ · cosα) = 0;
- окружные скорости колес на начальных цилиндрах, м/с:
Назначаем степень точности передачи по ГОСТ 1643-81.
Для редукторов общего назначения при современном уровне развития техники экономически оправданы седьмая (нормальная) и восьмая (пониженная) степени точности, в т.ч. и степени точности по нормам плавности работы. При назначении степени точности необходимо учесть ограничение по окружной скорости колес. Передачи восьмой степени точности могут эксплуатироваться при скорости V не более 6 м/с - для прямозубых колес и не более 10 м/с -для косозубых. Передачи седьмой степени точности при скорости V не более 10 м/с - для прямозубых колес и не более 20 м/с - для косозубых.
2.1.2 Проверочный расчет на сопротивление контактной усталости активных поверхностей зубьев
Определяем расчетное контактное напряжение в полюсе зацепления, МПа:
Ze - коэффициент, учитывающий механические свойства материалов колес:
Для стальных материалов, при Е = 2,1 · 105 МПа и υ = 0,3, ZE = 190;
Zh - коэффициент, учитывающий форму сопряженных поверхностей зубьев в полюсе зацепления (влияние радиусов кривизны поверхностей) и переход от нормальной силы на начальном цилиндре к окружной на делительном):
Zh = 2,5 при β = 0 и Х1 = Х2 = 0
Zε - коэффициент, учитывающий суммарную длину контактных линий:
Ft - окружная сила на делительном цилиндре в окружном сечении:
Ft = 2000·Т1/d1 = 2000·323,12/112,5 = 5744,4 Н;
КН- коэффициент нагрузки при расчете по контактным напряжениям:
КН = КНβ · КА · КНV · КНα , где
КА - коэффициент, учитывающий внешнюю динамическую нагрузку (неучтенную в циклограмме нагружения). КА = 1, т.к. в заданиях на курсовое проектирование привода мощность на выходном валу привода задана с учетом динамической составляющей внешней нагрузки;
КНβ - коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий. Для цилиндрических передач определяют по таблице 2.3 /8/, при фактическом значении ψbd=bw/dw1
Ψbd = 0,7225, тогда КНβ = 1,05 – (0,8 – 0,7225)·0,02/0,2 = 1,04225;
КНα -коэффициент, учитывающий распределение нагрузки между зубьями. КНα= 1 для прямозубых передач. Для косозубых передач при учебном проектировании можно принять КНα ≈ 1,35;
Khv- коэффициент, учитывающий внутреннюю динамическую нагрузку, возникающую в зацеплении:
WHV - удельная окружная динамическая сила, Н/мм:
δН - коэффициент, учитывающий влияние твердости поверхностей зубьев и вида зубчатой передачи, определяют по таблице 2.5 /8/:
δН = 0,06 для прямозубой передачи и твердости зубьев < 350 НВ;
δН = 0,02 для косозубой передачи и твердости зубьев < 350 НВ;
go - коэффициент, учитывающий влияние разности шагов зубьев шестерни и колеса, определяют по таблице 2.6 /8/:
go = 5,6 для 8 степени точности и модуле < 3,55;
go = 6,1 для 8 степени точности и модуле 3,55…10;
go = 4,7 для 7 степени точности и модуле < 3,55;
go = 5,3 для 7 степени точности и модуле 3,55…10;
КН = 1,082 · 1 · 1,04225· 1 = 1,13
Уточняем коэффициенты Zr, Zx, Zv, которые при проектировочном задавались приближенно и определяем уточненное значение расчетного допускаемого контактного напряжения, МПа:
В редукторах общего назначения параметр шероховатости боковых поверхностей зубьев рекомендуется назначать: Ra < 3,2 мкм при 8 степени точности передачи и Ra < 1,6 мкм при 7 степени, принимаем Ra = 3,2:
ZR = 0,90 при Ra св. 2,5 до 10.0 мкм;
ZX = 1 - при d<700мм;
ZV =1 - при V<5м/с;
Проверяют сопротивления активных поверхностей зубьев контактной усталости
σн ≤1,05·[σн]РУТ, 432,2 < 488,25 - условие выполняется.
2.1.3 Проверочный расчет на сопротивление усталости зубьев при изгибе
Определяем напряжения изгиба в опасных сечениях на переходных поверхностях зубьев шестерни и колеса, МПа:
b - ширина венца зубчатого колеса, мм. В цилиндрических передачах:
b2 = bw = 85 мм, b1 = bw + (3...4) = 45 + 4 = 89 мм;
YF - коэффициент, учитывающий форму зуба и концентрацию напряжений. Определяют по таблице 2.8 /8/: для косозубых и шевронных цилиндрических колес - по числу зубьев эквивалентного колеса Zv = Z/cos3 β:
YF = 3,9 при Z1 = 25 и Х1 = 0;
YF = 3,65 + (50 - 43)·0,05/10 = 3,685 при Z2 = 43 и Х1 = 0;
Yβ- коэффициент, учитывающий влияние наклона зуба:
Yβ =l - εβ · β / 1200 >0,7, Yβ =l;
Yε - коэффициент, учитывающий влияние перекрытия зубьев:
Yε = 1 для прямозубых передач. Для косозубых:
Yε = 0,2 + 0,8/εα при εβ < 1;
Yε =1/ εα при εβ ≥ 1;
KF- коэффициент нагрузки при расчете на изгиб :
Kf =Ка ·Kfv ·KFβ ·КFα,
где KFV – коэффициент, учитывающий внутреннюю динамическую нагрузку, возникающую в зацеплении при расчете на изгиб:
КFβ - коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий. Определяют по таблице 2.3 - для цилиндрической передачи /8/:
Ψbd = 0,7225 КFβ = 1,1 – (0,8 – 0,7225)·0,02/0,2 = 1,0923;
KFa- коэффициент, учитывающий распределение нагрузки между зубьями:
KFa = 1 для прямозубых передач.
KFa==1,35 для косозубых передач;
WFV - удельная окружная динамическая сила при расчете на изгиб, Н/мм:
δF - коэффициент, учитывающий влияние вида зубчатой передачи:
δF =0,16-для прямозубых передач;
δF =0,06-для косозубых и шевронных./8/:
go - коэффициент, учитывающий влияние разности шагов зубьев шестерни и колеса, определяют по таблице 2.6 /8/:
go = 5,6 для 8 степени точности и модуле < 3,55;
go = 6,1 для 8 степени точности и модуле 3,55…10;
Kf =1 · 1,22 · 1,0923· 1 = 1,333
2.1.4 Проектировочный расчет на сопротивление усталости зубьев при изгибе
Определяют допускаемое напряжение изгиба, не вызывающее усталостной поломки зуба, МПа
где: σ0Flimb – предел выносливости зубьев при изгибе, соответствующий базовому числу циклов напряжений, МПа:
σ0Flimb1 = 1,75ННВ = 1,75 ·285 = 498,75 ;
σ0Flimb2 = 1,75ННВ = 1,75 ·248 = 367,04 ;
[SF] – минимальный коэффициент запаса прочности:
[SF] = 1,7;
YR – коэффициент, учитывающий шероховатость переходной поверхности
YR = 1 для неполированных поверхностей;
YХ – коэффициент, учитывающий размеры зубчатого колеса
YХ1 = 1.05 - 0.000125 ∙ d = 1,05 - 0.000125 ∙ 112,5 = 1,036
YХ2 = 1.05 - 0.000125 ∙ d = 1,05 - 0.000125 ∙ 193,5 = 1,026
YА – коэффициент, учитывающий влияния двухстороннего приложения нагрузки :
YА = 1 при одностороннем приложении;
YZ – коэффициент, учитывающий способ получения заготовки зубчатого колеса:
YZ = 1 для поковок и штамповок;
Yg – коэффициент, учитывающий влияния шлифования переходной поверхности зуба:
Yg = 1 при улучшении – если переходная поверхность зубьев не шлифуется;
Yd – коэффициент, учитывающий влияние деформационного упрочнения или электрохимической обработки переходной поверхности:
Yd = 1 – если переходная поверхность зубьев не подвергается деформационному упрочнению или электрохимической обработке;
YN – коэффициент долговечности:
где: NFlimb – базовое число циклов напряжений; NHlimb = 4 ∙ 106;
qF – показатель степени кривой усталости при расчёте на сопротивление усталости при изгибе (для стальных колес с нешлифованной переходной поверхностью:
qF = 6 – для колес с термообработкой – улучшение, нормализация, объемная закалка, закалка ТВЧ зубьев с модулем m ≤ 3 мм;
qF = 9 – для колес с термообработкой – улучшение, нормализация, объемная закалка, закалка ТВЧ зубьев с модулем m >3 мм;
YNmax – предельное значение YN:
YNmax = 4 при qF = 6;
YNmax = 25 при qF = 9;
NFE – эквивалентное число циклов изменения контактных напряжений :
NFЕ = NK ∙ μH
где: NK – число циклов напряжений в течение отработки заданного ресурса передачи:
N K = 60 ∙ Lh ∙ n ∙ j;
μH – коэффициент, учитывающий форму циклограммы нагружения (при постоянном режиме μH = 1);
Lh – долговечность в часах,
n – частота вращения вала,
j – число вхождений в зацепление за один оборот колеса.
1) Для ведущего колеса:
Н1 = 285 HB (Сталь 40X «Улучшение»)
NK1 = 60 ∙ 16704 ∙ 254 ∙ 1 = 254,6 ∙ 106;
μН =1; ( при постоянном режиме нагружения);
NHE = NK;
qF = 9; ( при улучшении зубьев с модулем m > 3 мм);
YNmax = 2,5; (при qF = 9);
NFlimb = 4 ∙ 106;
Yd = 1; Yg = 1; YZ = 1; YА = 1;
d = 112,5 мм:
YХ1 = 1.05 - 0.000125 ∙ d = 1,05 - 0.000125 ∙ 112,5 = 1,036;
YR = 1; [SF] = 1,7;
[σF]1 = 498,75 ∙ 0,813 ∙ 1 ∙ 1 ∙ 1,04844 ∙ 1 ∙ 1 ∙ 1/ 1,7 = 247,1МПа.
Так как σF1 = 75 < [σF]1 = 247,1, МПа, то условие прочности для данной конструкции выполняется.
2) Для ведомого колеса:
Н1 = 248 НB (Сталь 40X «Улучшение»).
NK2 = 60 ∙ 16704 ∙ 150 ∙ 1 = 150,34 ∙ 106;
μН =1; ( при постоянном режиме нагружения);
NHE = NK;
qF = 9; ( при улучшении зубьев с модулем m > 3 мм);
YNmax = 2,5; (при qF = 9);
NFlimb = 4 ∙ 106;
Yd = 1; Yg = 1; YZ = 1; YА = 1;
d = 193,4 мм:
YХ2 = 1.05 - 0.000125 ∙ d = 1,05 - 0.000125 ∙ 193,5 = 1,026;
YR = 1; [SF] = 1,7;
[σF]2 = 367,04∙ 1,06 ∙ 1 ∙ 1 ∙ 1,026 ∙ 1 ∙ 1 ∙ 1/ 1,7 = 234,13 МПа
Так как σF2 = 73,8 < [σF]2 = 234,14 МПа, то условие прочности для данной конструкции выполняется.
2.2 Расчет быстроходной ступени
1) Для шестерни:
Н1 = 285 HB (Сталь 45 «Улучшение»).
Расчёты:
σHlimb = 2·285+70=640 МПа
NK1 = 60 ∙ 16704 ∙ 482,333 ∙ 1 = 483,4 ∙ 106;
μН =1; ( при постоянном режиме нагружения);
NHE = NK;
ZNmax = 2,6; ( при улучшении);
NHlimb = 30 ∙ (285)2,4 = 23.4 ∙ 106 ≤ 120 ∙ 106;
Так как NHE > NHlimb , то принимаем qH = 20;
[SH] = 1,1 ( при улучшении);
[σН]1 = 640 ∙ 0,86 ∙ 0,9/ 1,1 = 450,33 МПа.
2) Для ведомого колеса:
Н2 = 248 НВ (Сталь 40Х «Улучшение»).
Расчёты:
σHlimb = 2·248 + 70 = 566 МПа;
NK2 = 60 ∙ 16704 ∙ 254 ∙ 1 = 254,6 ∙ 106;
μН = 1; ( при постоянном режиме нагружения);
NHE = NK;
ZNmax = 2,6; ( при улучшении);
NHlimb = 30 ∙ (248)2,4 = 16,7 ∙ 106 ≤ 120 ∙ 106;
Так как NHE > NHlimb , то принимаем qH = 20;
[SH] = 1,1; ( при улучшении);
[σН]2 = 566·0,9·0,873 / 1,1 = 404,3 МПа.
[σН]1= 450,33 МПа
Для косозубых [σн]Р =0,45([σн]1 + [σн]2)=, 0,45(450,33 + 404,3) = 384,6 т.е [σн]РТ = 384,6 МПа
Расчет закрытой цилиндрической передачи при вписывании в заданное межосевое расстояние:
Предварительно задавшись значением КНβ = 1.1 определяем ψЬа:
Определяем ψ'bd = 0,5 ψ’ba · (u + l) = 0,5 · 0,331 · (1,9 + l) = 0,48
Сравниваем ψ'bd c рекомендованными значениями в таблице 2.2 /8/. Значение ψ'bd должно быть меньше или равно рекомендованным, ψ'bd меньше рекомендованных значений, условие выполняется.
Ψbm = (25…30) принимаем Ψbm = 25.
Определяем рабочую ширину венца передачи и округляют до целого, мм
bw =aw · ψ'bа = 160 · 0,331 = 52,96 мм ≈ 53 мм.
Определяем модуль и округляем до ближайшего стандартного :
m = bw / Ψbm = 53/25 = 2,12 ≈2
Определяем суммарное число зубьев колес:
Определяем Z1 = Z∑ / (u +1) = 150 / (1,9 + 1) = 51,7 и Z2 = Z1 · u = 51,7 ·1,9 = 98,23 ≈ 98 и округляем их до ближайших целых чисел Z1 = 52 и Z2 = 98.
Уточняем межосевое расстояние, мм:
В соосных редукторах межосевые расстояния тихоходной и быстроходной ступеней должны совпадать до сотых долей миллиметров. Расхождение ликвидируем корректировкой β :
Определяют геометрические и кинематические параметры передачи:
-делительные диаметры, мм:
d1 = m · Z1 = 2·52=104, d2 = m · Z2 = 2·98=196,
-начальные диаметры, мм:
dwl = 2aw·Z1/ (Z1+ Z2)=111, dw2 = 2aw·Z2/ (Z1+ Z2)=209,
-диаметры впадин, при нарезании реечным инструментом, мм:
df1 = d1 - 2m·(1,25 – X1) = 99, df2 = d2 - 2m · (l,25 - X2) = 191;
-диаметры вершин, из условия постоянства радиальных зазоров, мм
da1 = 2aw - df2 - 0,5m = 128 мм, da2 =2aw - df1 - 0,5m = 220;
- коэффициент торцового перекрытия (по приближенной формуле):
-осевой шаг зубьев, мм Рх = π· m /sinβ = 3,14 · 2/ sin 20,37 = 18,042;
-коэффициент осевого перекрытия εβ = bw/Px = 53/18,042 = 2,94;
-суммарный коэффициент перекрытия εγ = εα + εβ = 4,614;
- основной угол наклона линии зуба, град βb= arcsin (sin20,37 · cos20) = 19,1;
- окружные скорости колес на начальных цилиндрах, м/с:
- αt - угол профиля в торцовом сечении, град
Назначаем степень точности передачи по ГОСТ 1643-81.
Для редукторов общего назначения при современном уровне развития техники экономически оправданы седьмая (нормальная) и восьмая (пониженная) степени точности, в т.ч. и степени точности по нормам плавности работы. При назначении степени точности необходимо учесть ограничение по окружной скорости колес. Передачи восьмой степени точности могут эксплуатироваться при скорости V не более 6 м/с - для прямозубых колес и не более 10 м/с -для косозубых.
2.2.2 Проверочный расчет на контактную выносливость
1>700>5>














