123810 (689628), страница 6
Текст из файла (страница 6)
С тяжелых металлов =98 мг/л=0,098г/л=98г/м3
G тяжелых металлов =98*80=7840г/ч
3) Масса взвешенных веществ в очищенной сточной воде:
С взвешенных веществ =1,3 мг/л=0,0013г/л=1,3 г/м3
G взвешенных веществ =1,3*80=104 г./ч
4) Масса тяжелых металлов в очищенной сточной воде:
С тяжелых металлов =0,6 мг/л=0,0006г/л=0,6 г/м3
G тяжелых металлов =0,6*80=48 г./ч
5) Масса извлечённых взвешенных веществ:
G извлечённых в. в.= 20000–104=19896 г./ч
6) Масса извлечённых тяжёлых металлов:
Gизвлеч. тяж. Ме= 7840–48 =7792 г./ч
2.4 Расчет основного оборудования
Расчет электрофлотатора.
Материальные потоки в электрофлотаторе.
Исходные данные:
I = 50 А – токовая нагрузка на аппарат;
tоэл=25ºС – температура электролита;
Вт=98%;
Расстояние между электродами 5 – 10 мм
Экспериментальные данные по составу воды, поступающей в аппарат:
Na2SO4=2000 мг/л, Скипидар=0,01 мг/л, Масло веретенное=5 мг/л, ПАВ «Брулин»=30 мг/л, K2Cr2O7 =0,02 мг/л
рН=8,5
Катодные реакции
H2O→H2 + ОН- – 2ē
Анодные реакции
2H2O→O2+4H++4ē
Определение расхода воды при электрофлотации, GH2O
где GH2O кг/ч – количество воды, вступившее в электрохимическую реакцию на электроде;
Вт – выход по току, доли единицы;
М = 18 – молекулярная масса воды;
26.8 – количество электричества, равная 1 Р, А-ч;
n = 4, 2 соответственно – количество электронов, участвующих в электрохимической реакции.
G1H2O = 0,0082 кг/ч – количество воды, вступившее в реакцию на аноде.
G2H2O = 0,0165 кг/ч – количество воды, вступившее в реакцию на катоде.
GH2O = G1H2O + G2H2O
GH2O = 0,0247 кг/ч
Определение количества образовавшихся газов
где кг/ч – количество образовавшегося водорода,
МН2 = 2 – молекулярная масса водорода;
n = 2 – количество электронов, участвующих в электрохимической реакции.
-
= 0,0019 кг/ч
где кг/ч – количество образовавшегося кислорода,
МO2 = 32 – молекулярная масса кислорода.
= 0,2195 кг/ч
Определение количества растворителя (воды), уносимого с газообразными продуктами
а) Определение количества растворителя, уносимого с водородом
где t0эл = 25 – температура электролита, °С;
22,4 л – объем одного г-моль газа при нормальных условиях;
р = 23,76 мм. рт. ст. = 23,76133 = 3167,2 Па = 31,672 – упругость водяного пара при температуре электролита, гПа;
ρр = 0,02304 – плотность паров растворителя при t0эл, г/л.
-
= 5,5246 10–4 кг/ч
б) Определение количества растворителя, уносимого с кислородом
где – количество образовавшегося кислорода, кг/ч.
-
= 2,7623 10–4 кг/ч
Таким образом суммарный расход воды на электролиз:
-
=0,0503 кг/ч
Заключение
Итак, гальваническое производство является одним из крупнейших потребителей воды, а его сточные воды – одними из самых токсичных и вредных.
Основным видом отходов в гальваническом производстве являются промывные воды смешанного состава, содержащие несколько видов тяжелых металлов и других примесей. Очистка таких стоков затруднена. При этом не удается выделить металлы из шлама сложного состава, а если и удается, то возникают проблемы с дальнейшим использованием и переработкой отходов. Для решения проблемы снижения количества тяжелых металлов в сточных водах до ПДК необходимо использовать замкнутую систему водоснабжения с электрофлотационной очисткой, то есть промывные воды, подвергшиеся очистке от примесей возвращать в технологический цикл, а извлеченные примеси – на захоронение или переработку.
И действительно, в сравнении с другими методами очистки промышленных сточных вод преимущества использования электрофлотационных модулей очевидны:
-
высокая эффективность извлечения дисперсных веществ (гидроксидов и фосфатов тяжелых металлов и кальция, нефтепродуктов, поверхностно-активных и взвешенных веществ);
-
высокая производительность (1м2 оборудования – 4 м3/ч очищаемой воды);
-
отсутствие вторичного загрязнения воды благодаря примению нерастворимых электродов ОРТА;
-
низкие затраты электроэнергии от 0,5 до 1 кВт·ч/м3;
-
отсутствие заменяемых материалов (электродов, фильтров, сорбентов и пр.);
-
простота эксплуатации, автоматический режим работы не требуют ежегодного ремонта и остановок;
-
шлам менее влажный (94–96%), в 3–5 раз легче обезвоживается и может быть использован при изготовлении строительных материалов и / или пигментов для красителей.
В проекте рассмотрен электрофлотатор как основная ступень очистки, приведена его технологическая схема, её описание, рассчитан материальный баланс сточных вод.
Список литературы
-
Волоцков Ф.П. Очистка и использование сточных вод гальванических производств. М.: Химия, 1983.
-
Бучило Э. Очистка сточных вод травильных и гальванических отделений. М.: Энергия, 1977.
-
Костюк В.Н. Очистка сточных вод машиностроительных предприятий. Л.: Химия, 1990.
-
Алферова Л.А. Замкнутые системы водного хозяйства промышленных предприятий, комплексов и районов. М.: Стройиздат, 1984.
-
Яковлев С.В. Очистка производственных сточных вод. М.: Стройиздат, 1979.
-
Когановский А.М. Очистка и использование сточных вод в промышленном водоснабжении. М.: Химия, 1983.
-
Классен В.И., Мокроусов В.А. Введение в теорию флотации. М.: Металлургиздат, 1959. 580 с.
-
Глембоцкий В.А., Классен В.И. Флотация. М.: Недра, 1973. 384 с.
-
Родионов А.И., Клушин В.Н., Торочешников Н.С. Техника защиты окружающей среды. М.: Химия, 1989. 512 с.
-
Яковлев С.В., Карелин Я.А., Ласков Ю.М., Воронов Ю.В. Водоотводящие системы промышленных предприятий. М.: Стройиздат, 1990. 511 с.
-
Пушкарев В.В., Южанинов А.Г., Мэн С.К. Очистка маслосодержащих вод. М.: Металлургия, 1980. 200 с.
-
Проскуряков В.А., Шмидт Л.И. Очистка сточных вод в химической промышленности. Л.: Химия, 1977. 464 с.
-
Справочник по обогащению руд. Основные процессы. М.: Недра, 1983.