123728 (689580), страница 2
Текст из файла (страница 2)
Определим угловые скорости звеньев в первом положении механизма:
;
;
;
Направление угловых скоростей и ускорений – соответственно направлению и характеру вращений этих звеньев относительно точек: А (шатун) и О2 (коромысло).
1.7 Определение скоростей и ускорений центров масс звеньев
;
;
1.8 Аналитический метод расчёта
А
О2
2
1
В










О1
3
4

С
5




D`
D






1. Расчёт ведётся для первого положения.
Составляем уравнение замкнутости векторного контура
2. В проекциях на координатные оси
3. Разделим второе уравнение на первое
;
4. Берём производную от левой и правой части
;
5. Найдем передаточную функцию скоростей U31
;
6. Передаточную функцию ускорений U'31
;
7. Угловая скорость
8. Угловое ускорение
9.Составляем векторное уравнение для контура О2ВС
φ3=85.8°
;
;
;
м/с2
м/с2
Составляем программу для вычисления скоростей и ускорений 5 звена и для построения диаграмм скорости и ускорения
Sub кинематика()
Dim f1, f3, w3, e3, sinf4, cosf4, sinf3, cosf3, U43, U431,_
Vc, ac, h, k As Double
Worksheets(1).Activate
Worksheets(1).Range("a:o").Clear
Worksheets(1).ChartObjects.Delete
Const l0 = 0.304
Const l1 = 0.104
Const l3 = 0.38
Const l4 = 0.57
Const l5 = 0.285
Const w1 = 8.37
h = 3
k = 1
For f1 = 10 * 3.14 / 180 To 370 * 3.14 / 180 Step 30 * 3.14 / 180
w3 = w1 * ((l1 ^ 2 + l0 * l1 * Sin(f1)) / (l1 ^ 2 + l0 ^ 2 + _
2 * l0 * l1 * Sin(f1)))
e3 = w1 ^ 2 * ((l0 * l1 * Cos(f1) * (l0 ^ 2 - l1 ^ 2)) / ((l1 ^ 2 + _
l0 ^ 2 + 2 * l0 * l1 * Sin(f1)) ^ 2))
sinf3 = (l0 + l1 * Sin(f1)) / (Sqr(l1 ^ 2 + l0 ^ 2 + 2 * l0 * l1 * Sin(f1)))
cosf3 = Sqr(1 - sinf3 ^ 2)
sinf4 = (l5 - l3 * sinf3) / l4
cosf4 = Sqr(1 - sinf4 ^ 2)
U43 = -((l3 * cosf3) / (l4 * cosf4))
U431 = (l3 * sinf3 + l4 * sinf4 * U43) / (l4 * cosf4)
Vc = -(w3 * (-l3 * sinf3 - l4 * sinf4 * U43))
ac = -((w3 ^ 2 * (-l3 * cosf3 - l4 * sinf4 * U431 - l4 * cosf4 * U43)) + _
(e3 * (-l3 * sinf3 - l4 * sinf4 * U43)))
Worksheets(1).Cells(3, h) = Vc
Worksheets(1).Cells(8, h) = ac
Worksheets(1).Cells(2, h) = k
Worksheets(1).Cells(7, h) = k
h = h + 1
k = k + 1
Next f1
Worksheets(1).Cells(2, 2) = 0
Worksheets(1).Cells(7, 2) = 0
Worksheets(1).Cells(3, 2) = Vc
Worksheets(1).Cells(8, 2) = ac
Worksheets(1).Cells(2, 1) = "Vc, м/с"
Worksheets(1).Cells(3, 1) = "Аналитические"
Worksheets(1).Cells(7, 1) = "ac, м/с^2"
Worksheets(1).Cells(8, 1) = "Аналитические"
Worksheets(1).Cells(1, 7) = "Положения механизма"
Worksheets(1).Cells(6, 7) = "Положения механизма"
End Sub
Рисунок 4 -Результаты работы программы
Рисунок 4 -Результаты работы программы
2. Силовой анализ механизма
Исходные данные:
Масса шатуна m2=70 кг.
Масса коромысла m3=80 кг.
Масса материала с жёлобом, m5=370 кг.
Диаметр цапф вращательных пар dц=60 мм.
Моменты инерции коромысла и шатуна
,
2.1 Определение сил инерции
Веса звеньев:
Сила полезного сопротивления
Силы инерции массивных звеньев и их моменты определим по формулам:
и
При расчётах диад действие момента инерции интерпретируем как действие соответствующей силы инерции, отнесённой на одноимённое плечо от центра тяжести данного звена. Рассчитаем эти плечи по формуле:
Плечо откладываем перпендикулярно линии действия силы, причём перпендикуляр опускаем из центра масс звена, и из полученной точки проводим линию, параллельно направлению действия силы инерции. Пересечение этой линии со звеном (действительное или мнимое) даёт нам точку приложения соответствующей силы инерции.
2.2 Расчёт диады 4-5
Для расчёта этой диады изобразим её со всеми приложенными к ней силами. Действия отброшенных связей заменяем реакциями и
. Из условия равновесия ползуна 4 получим:
. Составим уравнение равновесия ползуна 5:
Строим план сил для диады 4-5. Масштабный коэффициент плана сил.
Из плана сил получаем
2.3 Расчёт диады 2-3
Изобразим диаду со всеми приложенными к ней силами. В точках А и О2 взамен отброшенных связей прикладываем реакции и
. В точке С прикладываем ранее найденную реакцию
. Реакции
и
разложим на нормальные и касательные составляющие, при этом касательную составляющую
найдём по уравнению равновесия моментов сил, приложенных к звену 2:
, откуда
Касательную составляющую найдём, составив и решив уравнение равновесия моментов сил, приложенных к звену 3:
, откуда
Строим план сил, предварительно рассчитав отрезки в мм:
Реакцию внутреннюю в точке B определим на основании уравнения равновесия звена 2:
2.4 Расчёт кривошипа
Изобразим кривошип с приложенными к нему силами и уравновешивающей силой Ру, эквивалентной силе действия на кривошип со стороны двигателя. Действие отброшенных связей учитываем, вводя реакции и
. Определяем уравновешивающую силу, считая, что она приложена в точке А кривошипа, перпендикулярно ему. Уравнение равновесия кривошипа в этом случае принимает вид:
откуда находим
2.5 Определение уравновешивающей силы методом Жуковского
Строим повёрнутый на 90 план скоростей и в соответствующих точках прикладываем все внешние силы, включая Ру и силы инерции. Составим уравнение моментов относительно точки РV, считая силу Ру неизвестной:
Погрешность графического метода
2.6 Определение мощностей
Мгновенная потребляемая мощность без учета потерь на трение:
Мощность привода на трение на преодоление силы полезного сопротивления:
,
где f- коэффициент трения, R-реакция во вращательной паре, rц – радиус цапф.
Суммарная мощность трения
Мгновенная потребляемая мощность
2.7 Определение кинематической энергии механизма
Кинематическая энергия механизма равна суммарной кинематической энергии входящих в него массивных звеньев.
За звено приведения выбираем кривошип. Кинетическая энергия кривошипа равна:
3. Геометрический расчет зубчатой передачи. Проектирование
планетарного редуктора
3.1 Геометрический расчёт зубчатой передачи
Исходные данные:
- число зубьев шестерни Z512
- число зубьев колеса Z630
- модуль зубчатых колёс m, мм5
Нарезание зубчатых колёс производится методом обкатки инструментом реечного типа, имеющего следующие параметры:
- коэффициент высоты головки зуба
1
- коэффициент радиального зазора 0,25
- угол профиля α, град20
Суммарное число зубьев колёс
Поскольку , то проектируем равносмещённое зубчатое зацепление.
Минимальный коэффициент смещения шестерни и колеса
Делительное межосевое расстояние
Делительная высота головки зуба
Делительная высота ножки зуба
Высота зуба
Делительный диаметр
Основной диаметр
Диаметр вершин зубьев
Диаметр впадин зубьев
Делительная толщина зуба
Основная толщина зуба
Угол профиля по окружности вершин
Толщина зуба по окружности вершин
Делительный шаг
Основной шаг
Строим картину эвольвентного зацепления по результатам расчетов. Масштабный коэффициент построения .
Определение коэффициента торцового перекрытия аналитически
Текст расчетной программы
unit Unit1;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Buttons;
type
TForm1 = class(TForm)
GroupBox1: TGroupBox;
Edit1: TEdit; Edit2: TEdit; Edit3: TEdit; Edit4: TEdit; Edit5: TEdit;
Edit6: TEdit; Label1: TLabel; Label2: TLabel; Label3: TLabel;
Label4: TLabel; Label5: TLabel; Label6: TLabel; GroupBox2: TGroupBox;
Edit7: TEdit; Edit8: TEdit; Edit9: TEdit; Edit10: TEdit; Edit11: TEdit;
Edit12: TEdit; Edit13: TEdit; Edit14: TEdit; Edit15: TEdit; Edit16: TEdit;
Edit17: TEdit; Edit18: TEdit; Edit19: TEdit; Edit20: TEdit; Edit21: TEdit;
Edit22: TEdit; Edit23: TEdit; Edit24: TEdit; Edit25: TEdit; Edit26: TEdit;
Edit27: TEdit; Label7: TLabel; Label8: TLabel; Label9: TLabel;
Label10: TLabel; Label11: TLabel; Label12: TLabel; Label13: TLabel;
Label14: TLabel; Label15: TLabel; Label16: TLabel; Label17: TLabel;
Label18: TLabel; Label19: TLabel; Label20: TLabel; Label21: TLabel;
Label22: TLabel; Label23: TLabel; Label24: TLabel; Label25: TLabel;
Label26: TLabel; Label27: TLabel; BitBtn1: TBitBtn; BitBtn2: TBitBtn;
procedure BitBtn1Click(Sender: TObject);
private
{ Private declarations }
public
{ Public declarations }
end;
var
Form1: TForm1;
Z1,Z2,X1,X2,Aw,A,q,h,ha,ha1,c,ha2,m,hf1,hf2,d1,d2,dw1,dw2,db1,db2,da1,da2,
df1,df2,S1,S2,P,Pb,r:real;
implementation