123341 (689437), страница 3
Текст из файла (страница 3)
Определим площадь занимаемую резистором:
мм2 (84)
Определим коэффициент нагрузки резистора:
(85)
Результаты расчета занесем в таблицу №2:
Таблица №2
резисторы | B, мм | В1, мм | В2,мм | S, мм2 | P, мВт | КН | ||||||
№ | R,Ом | |||||||||||
R8 | 200 | 5,053 | 1 | 4,953 | 25,53 | 125 | 0,2448 |
Конденсаторы
Конденсаторы являются широко распространенными элементами гибридных микросхем. Пленочный конденсатор представляет собой последовательно нанесенные на подложку и друг на друга пленки проводника и диэлектрика. Такая конструкция пленочных конденсаторов делает их более сложными элементами микросборок по сравнению с резисторами.
Применение многослойных конденсаторов с большим числом обкладок приводит к усложнению технологии, снижению надежности, электрической прочности конденсаторов и повышение их стоимости. Поэтому в пленочных микросборках в основном применяются лишь трехслойные конденсаторы. Все характеристики пленочных конденсаторов зависят от выбранных материалов. Диэлектрическая пленка должна иметь высокую адгезию к подложке и металлическим обкладкам, обладать высокой электрической прочностью и малыми диэлектрическими потерями и многими другими требованиями и характеристиками.
Под наши номиналы конденсаторов более подходит стекло электровакуумное С41-1 (НПО.027.600) с удельной емкостью 150…400 пФ/мм2, диэлектрической проницаемостью 0 = 5,2, tgд=(0,2…0,3)·102, электрической прочностью ЕПР = 300…400 В/мкм, ТКЕ 104 Мд = 1,7, д = 0,2, коэффициентом старения 10-5 Мкд = 2, кд = 1. Также имеем технологические ограничения на размеры обкладок: l = b = 0,01мм. – максимальное отклонение размеров обкладок, Мсо = 5% – среднее значение производственной относительной погрешности удельной емкости, со = 1% – половина поля рассеивания производственной относительной погрешности удельной емкости.
Вычислим среднее значение относительной погрешности удельной емкости, Вызванной изменением температуры, Мcotb при верхней и Мcotn при нижней предельной температуре:
(86)
(87)
Среднее значение относительной погрешности емкости, вызванной изменением температуры (2.17; 2.18 [5]):
(88)
%
%
Половины полей рассеяния относительной погрешности предельной емкости, вызванной изменением температуры:
(89)
Половины полей рассеяния относительной погрешности емкости, вызванной изменением температуры (2.20; 2.21 [5]):
(90)
%
Среднее значение относительной погрешности удельной емкости, вызванной старением диэлектрической пленки:
(91)
Среднее значение относительной погрешности емкости, вызванной старением диэлектрической пленки (2.23; 2.24 [5]):
(92)
%
Половина поля рассеяния относительной погрешности удельной емкости, вызванной старением диэлектрической пленки:
(93)
Половина полей рассеяния относительной погрешности емкости, вызванной старением диэлектрической пленки (2.26; 2.27 [5]):
(94)
%
Найдем сумму средних значений относительных погрешностей:
(95)
(96)
Введем коэффициент запаса на уход емкости под действием не учетных факторов:
Определим допустимое значение половины поля рассеяния, производственной относительной погрешности активной площади:
(97)
% (98)
- минимальное значение двух предыдущих.
Допустимый коэффициент формы активной площади конденсатора:
(99)
Коэффициент формы берем из условия 2.39 [5]:
(100)
К = 1.
Определим максимальную удельную емкость, обусловленную заданным допуском на емкость по техническим параметрам:
пФ/мм2 (101)
Коэффициент запаса электрической прочности конденсатора принимаем равный 3:
Определим максимальную удельную емкость, обусловленную электрической прочностью межслойного диэлектрика и рабочим напряжением:
пФ/мм2 (102)
мм. – минимальная толщина диэлектрика, тогда максимальная удельная емкость из допустимого уровня производственного брака:
пФ/мм2 (103)
Определим минимальную удельную емкость, приняв значение максимальной толщины диэлектрика:
мм.
Тогда:
пФ/мм2 (104)
Выберем удельную емкость из условия:
(105)
пФ/мм2
Определим соответствующую С0 толщину диэлектрика:
мкм. (106)
Определим расчетную активную площадь конденсатора:
мм2 (107)
Определим расчетное значение длины и ширины верхней обкладки конденсатора при выбираем коэффициенте формы:
мм.
мм. (108)
С учетом масштаба фото оригинала:
мм (109)
= 0,2 мм. – минимальное расстояние краем нижней и верхней обкладок, обусловленное выбранной технологией.
Определим расчетное значение длины и ширины нижней обкладки конденсатора:
мм. (110)
С учетом масштаба фото оригинала:
мм. (111)
мм. – минимальное расстояние между краем нижней обкладки и диэлектрическим слоем, обусловленное выбранной технологией.
Определим расчетное значение длины и ширины диэлектрического слоя конденсатора:
мм. (112)
С учетом масштаба фото оригинала:
мм. (113)
Определим площадь, занимаемую конденсатором:
мм2 (114)
Определим точность емкости сконструированного конденсатора. Для этого определим среднее значение относительной погрешности активной площади:
(115)
Определим среднее значение производственной погрешности:
(116)
Определим поле рассеяния относительной погрешности активной площади:
(117)
Определим поле рассеяния производственной погрешности:
(118)
Определим положительное и отрицательное значение предельного отклонения емкости:
(119)
(120)
Предельное отклонение емкости будет равно максимальному из этих значений:
Проверим условие:
Как видно это условие выполняется, из этого следует, что выбранный материал нам подходит по своим характеристикам.
Занесем полученные результаты в таблицу №3:
Таблица №3
L1, мм | B1, мм | L2, мм | B2, мм | Lд, мм | Bд, мм | S, мм2 | SP, мм2 | |
С1; C2 | 18,3 | 18,3 | 17,4 | 17,4 | 19 | 19 | 361 | 286 |
В связи с тем, что геометрические размеры конденсатора получились очень большие, то целесообразно выбрать навесной конденсатор марки К10-9 с параметрами:
длина L=5,5 мм; ширина В=2,5 мм;
Определим параметры для навесных конденсаторов емкостью 2,2 мкФ:
Конденсатор типа К53-16:
-
рабочее напряжение Uр=6,3В
-
длина L=5 мм
-
ширина В=2,3 мм
-
высота h=1,6 мм
-
площадь занимаемая конденсатором S=11,5 мм2
Расчёт площади платы. Выбор типа подложки и корпуса
Для определения минимально допустимой площади платы, необходимо произвести расчёт площади под каждый вид плёночных (резисторов, конденсаторов, контактных площадок) и дискретных элементов.
Число контактных площадок определяется исходя из заданной схемы соединений. Технологические и конструктивные данные и ограничения позволяют оценить минимально допустимые геометрические размеры контактных площадок в зависимости от способа формирования плёночных элементов. Общая площадь необходимая под контактные площадки:
(121)
где Si – площадь i – й площадки;
m – число площадок.
Определим площадь контактных площадок под резисторы:
мм2 (122)
Определим площадь контактных площадок под транзисторы :
мм2 (123)
мм2 (124)
Определим площадь резисторов:
мм2 (125)
Определим площадь транзисторов:
мм2 (126)
Определим площадь конденсаторов:
мм2 (127)
Определим площадь контактных площадок под конденсаторы :
мм2 (128)
Суммарная (площадь) минимальная площадь платы, необходимая для размещения элементов и компонентов находится по формуле:
(129)
где Ки – коэффициент использования платы, обычно принимают Ки=2…3. Введение коэффициента использования связано с тем, что полезная площадь (площадь, занимаемая элементами и компонентами) несколько меньше полной, что обусловлено технологическими требованиями и ограничениями. Конкретное значение коэффициента использования зависит от сложности схемы и способа её изготовления.
мм2 (130)
Исходя из ориентировочного расчёта суммарной площади, проведённого выше, выбираем подложку с необходимыми размерами и выбираем типоразмер корпуса.
Данной площади платы соответствует размер подложки 20х16 мм. Геометрические размеры подложек стандартизированы. Выбираем подложку из ситалла СТ50-1. Этот материал очень широко используется для изготовления гибридных интегральных микросхем, так-так имеет очень хорошие электрофизические и механические характеристики. Минимальный габаритный размер подложки из данного материала 48х60 мм, поэтому на данной подложке изготавливается групповым методом несколько гибридных микросхем, потом эту подложку режут на заданное количество подложек, в данном случае на 9 подложек.