123326 (689427), страница 2
Текст из файла (страница 2)
(2.9)
где: - масса i-го звена рычажного механизма, кг
- линейная скорость центра масс i-го звена,
- угловая скорость i-го звена,
- приведённый момент инерции i-го звена по отношению к центру масс
(2.10)
- для звена, совершающего сложное движение
- для звена, совершающего вращательное или колебательное движения
- для звена, совершающего поступательное движение
Запишем формулу для нашего механизма:
(2.11)
Для 5-го положения приведём расчёт, а для остальных положений сведём значение в таблицу 2.2
кг∙м2
кг∙м2
кг∙м2
Подставив все известные величины в формулу (2.11) получим:
кг∙м2
Таблица 2.2 – Приведённые моменты инерции.
N положения |
| N положения |
|
1 | 0,0286 | 7 | 0,0286 |
2 | 0,0690 | 8 | 0,0519 |
3 | 0,2544 | 9 | 0,1529 |
4 | 0,2683 | 10 | 0,2401 |
5 | 0,1558 | 11 | 0,2232 |
6 | 0,0721 | 12 | 0,1277 |
Для построения графика приведённого момента инерции необходимо Рассчитать масштабные коэффициенты.
,
(2.12)
где: - масштабный коэффициент по оси
- максимальное значение
, кг∙м2
- значение
на графике, мм
,
(2.13)
где: - масштабный коэффициент по оси φ
- принятая длинна одного оборота по оси φ
2.3 Определение приведённого момента сопротивления.
На планах скоростей прикладываем все силы, действующие на механизм, и указываем их плечи. Составляем сумму моментов относительно полюса и решаем уравнение.
Для 1-го положения:
(2.14)
где: плечи соответствующих сил, снятые с плана скоростей, мм.
H,
H
H
Находим момент привидения:
(2.15)
где: - приведённая сила, Н
- длина соответствующего звена, м
Н∙м
Для 2-го положения:
H
Н∙м
Для 3-го положения:
H
Н∙м
Для 4-го положения:
H
Н∙м
Для 5-го положения:
H
Н∙м
Для 6-го положения:
H
Н∙м
Для 7-го положения:
H
Н∙м
Для 8-го положения:
H
Н∙м
Для 9-го положения:
H
Н∙м
Для 10-го положения:
H
Н∙м
Для 11-го положения:
H
Н∙м
Для 12-го положения:
H
Н∙м
Все значения сводим в таблицу.
Таблица 2.3 – Приведённые моменты сопротивления.
N положения |
| N положения |
|
1 | -3,09 | 7 | 3,104 |
2 | -0,76 | 8 | 3,279 |
3 | 1,045 | 9 | -87,572 |
4 | 0,783 | 10 | -118,594 |
5 | 1,139 | 11 | -115,48 |
6 | 2,06 | 12 | -82,12 |
Определяем масштабный коэффициент построения графика моментов сопротивления:
,
(2.16)
где: - масштабный коэффициент по оси
- максимальное значение
,
- значение
на графике, мм
По данным расчёта строится график .
Путём графического интегрирования графика приведённого момента строится график работ сил сопротивления .
График работ движущих сил получаем в виде прямой, соединяющей начало и конец графика работ сил сопротивления.
Масштабный коэффициент графика работ:
,
(2.17)
где: Н – полюсное расстояние для графического интегрирования, мм
Н=30мм
Момент движущий является величиной постоянной и определяется графически.
Путём вычитания ординат графика из соответствующих ординат
строится график изменения кинетической энергии
.
(2.18)
Таблица 2.4 – Значения ,
,
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
| 0 | -0,39 | -0,26 | 0,08 | 0,38 | 0,98 | 1,78 | 2,8 | 0,93 | -37,84 | -77,52 | -114,68 |
| 0 | -7,34 | -18,65 | -29,96 | -41,27 | -52,58 | -67,2 | -75,36 | -86,67 | -97,98 | -109,29 | -120,6 |
| 0 | -6,95 | -18,39 | -30,04 | -41,65 | -53,56 | -68,98 | -78,16 | -87,6 | -60,14 | -31,77 | -5,92 |
По методу Ф. Витенбауэра на основании ранее построенных графиков и
строим диаграмму энергия-масса
.
Определяем углы и
под которыми к диаграмме энергия-масса, проводятся касательные.
(2.19)
(2.19)
где: - коэффициент неравномерности вращения кривошипа.
Вследствие того что, пересечение касательных и оси выходит за приделы формата, то ab определим из геометрии с помощью следующей формулы:
,мм
мм
Определяем момент инерции маховика
,
(2.20)
Маховик устанавливается на валу звена приведения.
Определим основные параметры маховика.
,кг (2,21)
где: - масса маховика, кг
- плотность материала,
(материал-Сталь 45)
- ширина маховика, м
- диаметр маховика, м
,м (2,22)
где: - коэффициент (0,1÷0,3),
м
м
кг
3. СИЛОВОЙ АНАЛИЗ РЫЧАЖНОГО МЕХАНИЗМА
3.1 Построение плана скоростей для расчётного положения
Расчётным положением является положение №11. Построение плана скоростей описано в разделе №2. Масштабный коэффициент плана скоростей
3.2 Определение ускорений
Определяем угловое ускорение звена 1.
, (3.1)
где: - момент от сил движущих,
- момент от сил сопротивления,
- приведённый момент инерции маховика,
- приведённый момент инерции рычажного механизма для расчётного положения,
- первая производная от приведённого момента инерции механизма для расчётного положения
, (3.2)
где: - масштабный коэффициент по оси
,
- масштабный коэффициент по оси φ,
- угол между касательной, проведённой к кривой графика
в расчётном положении и осью φ.
Строим план ускорений для расчётного положения.
Скорость точки А определяем по формуле
, (3.3)
где: - ускорение точки А,
- нормальное ускорение точки А относительно точки О,
- тангенциальное (касательное) ускорение точки А,
Ускорение найдём по формуле:
, (3.4)
где: - угловая скорость кривошипа,
- длина звена ОА, м
Ускорение найдём по формуле:
, (3.5)
Из произвольно выбранного полюса откладываем вектор
длинной 100мм. Найдём масштабный коэффициент плана скоростей.
, (3.6)
Определим длину вектора :
Т.к. <1мм, то на плане ускорений вектор не строим.
Ускорение точки А определим из следующеё формулы:
Определим ускорение точки B из следующей системы уравнений:
, (3.7)
Для определения нормальных ускорений точки В относительно точек А и С
Воспользуемся следующими формулами:
Ускорение точки С равно нулю, т.к. она неподвижна.
Определим длину векторов и
:
Т.к. <1мм, то на плане ускорений вектор не строим.
Ускорение точки В найдём, решив системе (3.7) векторным способом:
Из вершины вектора ускорения точки А ( ) откладываем вектор
(параллелен звену АВ и направлен от В к А), из вершины вектора
проводим прямую перпендикулярную звену АВ (линия действия
); из полюса
откладываем вектор
(параллелен звену ВС и направлен от В к С), из вершины вектора
проводим прямую перпендикулярную звену ВС (линия действия
); на пересечении линий действия векторов
и
получим точку b, соединив полученную точку с полюсом, получим вектор ускорения точки В. Из плана ускорений определяем вектора тангенциальных ускорений и ускорение точки В:
Из полученных тангенциальных ускорений найдём угловые ускорения 2-го и 3-го звеньев:
Ускорение точки D найдём из следующего соотношения:
(3.8)
где: ,
- расстояния между соответствующими точками на механизме, м
,
- длинны векторов ускорений на плане, мм
мм
Ускорение точки D’ определим из следующей системы уравнений:
, (3.9)
где: =
=0, т.к. звенья 4 и 5 не совершают вращательного движения,
линия действия направлена вертикально,
линия действия направлена горизонтально.
Решая систему (3.9) получим Ускорение точки D’ равно:
Определим ускорения центров масс звеньев:
Ускорение центра масс 2-го звена найдём из соотношения (3.10)
(3.10)
Из плана ускорений мм
мм
мм
Ускорение центра масс 3-го звена найдём из соотношения (3.11)
(3.10)
Из плана ускорений мм
мм
мм
Ускорения центров масс 4-го и 5-го звеньев равны ускорениям точек D и D’ соответственно:
Значения всех ускорений сведём в таблицу:
Таблица З.1 – Ускорения звеньев.
Ускорение точек механизма | Значение, | Ускорение центров масс | Значение, | Угловые ускорения | Значение, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| --- | --- |
|
| --- | --- | --- | --- |
|
| --- | --- | --- | --- |
|
| --- | --- | --- | --- |
|
| --- | --- | --- | --- |
|
| --- | --- | --- | --- |
|
| --- | --- | --- | --- |
3.3 Определение сил и моментов инерции звеньев
Силы инерции определяем по формуле:
(3.11)
где: - масса i-го звена, кг ;
- ускорение центра масс i-го звена,
Определяем моменты инерции звеньев:
(3.12)
где: - момент инерции i-го звена,
- момент инерции i-го звена относительно центра масс,
- угловая скорость i-го звена,
Рассчитаем силу тяжести каждого звена:
3.4 Определение реакций в кинематических парах и уравновешивающей силы методом планов
Рассмотрим группу Асура 5-0: Сила и
найдем из следующего уравнения:
Масштабный коэффициент сил:
где - алгебраическое значение силы, Н
длина вектора силы на плане,
.
Определим длины векторов: ,
Из плана сил определяем значения неизвестных сил:
Таблица 3.2 – Силы и вектора сил 4-го звена.
|
|
|
|
| |
| 78,4 | 1139,472 | 800 | 78,4 | 339,472 |
| 10,321 | 150 | 105,318 | 10,321 | 44,691 |
Рассмотрим звено №4 (ползун):
Так как силы и
равны нулю, то на ползун действует только две силы, которые расположены на одной прямой и противоположны по направлению.
Рассмотрим группу Асура 2-3:
Найдём тангенциальные реакции из следующих уравнений:
(3.13)
(3.14)
Из уравнения (3.13) получим
Из уравнения (3.14) получим
С помощью плана сил определим неизвестные реакции и
:
Найдём масштабный коэффициент
Из плана сил определяем значения неизвестных сил:
Реакцию определяем из следующего векторного уравнения
Таблица 3.3 – Силы и вектора сил 2-го и 3-го звеньев.
|
|
|
|
|
|
|
|
|
| |
| 954,968 | 957,62 | 1352,403 | 1161,317 | 54,88 | 339,472 | 65,66 | 501,053 | 326,893 | 901,331 |
| 123,349 | 123,691 | 174,684 | 150 | 7,089 | 43,848 | 8,481 | 64,719 | 42,223 | 116,421 |
Рассмотрим начальный механизм.
Определим уравновешивающую силу
Уравновешивающий момент равен
Реакцию определяем графически
Из плана сил находим
3.5 Определение уравновешивающей силы методом Жуковского
Для этого к повёрнутому на плану скоростей в соответствующих точках прикладываем все внешние силы действующие на механизм, не изменяя их направления. Моменты раскладываем на пару сил, изменив их направления.
, (3.15)
где: и
- пара сил,
- момент инерции i-го звена,
- длина i-го звена,
Записываем уравнение моментов сил относительно полюса :
, отсюда
Уравновешивающий момент равен
3.6 Расчёт погрешности 2-х методов
, (3.16)
где: - сила полученная методом Жуковского,
- сила полученная методом планов,
- погрешность,
4. ПРОЕКТИРОВАНИЕ КИНЕМАТИЧЕСКОЙ СХЕМЫ ПЛАНЕТАРНОГО РЕДУТОРА И РАСЧЁТ ЭВОЛЬВЕНТНОГО ЗАЦЕПЛЕНИЯ
4.1 подбор числа зубьев и числа сателлитов планетарного редуктора
Рисунок 4.1
Передаточное отношение равно
(4.1)
где: - передаточное отношение от 5-го звена к водилу, при неподвижном третьем звене
- передаточное отношение от 2-го звена к первому
из задания
(4.2)
где: - число зубьев первого колеса
- число зубьев второго колеса
Определим неизвестные числа зубьев колёс:
Запишем условие соосности
(4.3)
Зная передаточное отношение и условие соосности подбираем значения чисел зубьев, которые удовлетворяют этим условиям.
Исходя из предыдущих двух условий, выбираем:
,
,
,
Передаточное отношение
- выполняется
Условие соосности
- выполняется
Проверяем условие соседства:
(4.4)
где: - число сателлитов планетарного механизма
При имеем
- условие соседства выполняется
Проверяем условие сборки
(4.5)
где : - сумма чисел зубьев в одной из ступеней механизма
- целое число
- условие сборки выполняется
4.2 Исследование планетарного механизма графическим и аналитическим способом
Рассчитаем радиусы колёс
(4.6)
где: - радиус колеса, мм
- модуль