123140 (689372), страница 3
Текст из файла (страница 3)
6. Конические зубчатые передачи
6.1. Основные параметры
Конические зубчатые передачи применяют для передачи энергии между пересекающимися осями валов. Наибольшее применение имеют ортогональные передачи с межосевым углом Σ = 90° (рис. 10).
Конические колеса бывают с прямыми (в открытых передачах) и круговыми (в редукторах) зубьями. Круговые зубья очерчены линиями по дугам окружности.
Конуса с вершиной в точке О являются основными (рис.10). Внешние и внутренние торцы на конических зубчатых колесах формируют внешними (вершины Ое) и внутренними (вершины Оi) дополнительными конусами, образующие которых перпендикулярны образующей делительного конуса.
| На длине 0,5b расположен средний дополнительный конус с вершиной Оm (параметры – с индексом m). Расстояние от вершины О по образующей делительного конуса до внешнего торца е называют внешним конусным расстоянием Re , до середины ширины венца – средним конусным расстоянием Rm (рис. 10). Пересечения делительного конуса с дополнительными конусами определяют диаметры делительных окружностей ко-нического зубчатого колеса: de – внешний, dm – средний, di – внутренний делительные диаметры.- | - Рис. 10 |
Угол наклона зубьев β определяют (рис. 11) углом между лучом, проведенным из вершины О, и касательной к линии зуба в рассматриваемой точке зуба. Для прямых зубьев β = 0. У круговых зубьев угол β переменный:
βe > βm > βi. За расчетный принимают угол βm в среднем сечении.
|
Рис. 11 | Рис. 12 Лучше всего зарекомендовали себя передачи с круговыми зубьями с углом βm = 35°. |
Наличие угла наклона повышает плавность работы, контактную и изгибную прочность, уменьшает шум, но увеличивает нагрузки на опоры и валы.
Зубья конических колес в зависимости от изменения размеров их нормальных сечений по длине выполняют в виде трех осевых форм (рис. 12).
Осевая форма I - пропорционально понижающиеся зубья (рис. 12, а). Вершины конусов делительного и впадин совпадают, высота ножки зуба пропорциональна конусному расстоянию. Применяют для прямых зубьев.
Осевая форма II – нормально сужающиеся зубья (рис. 12, б). Вершина конуса впадин Оf расположена так, что ширина дна впадины колеса постоянна, а толщина зуба по делительному конусу пропорциональна конусному расстоянию. Эта форма позволяет одним инструментом обрабатывать сразу обе грани зубьев, повышая производительность. Является основной для колес с круговыми зубьями, особенно в массовом производстве.
Осевая форма III – равновысокие зубья (рис.12, в). Образующие конусов делительного, впадин и вершин параллельны. Высота зуба постоянна по всей длине. Применяют для передач с межосевым углом Σ меньше 40° и круговыми зубьями при (z12 + z22)1/2 ≥ 60.
За расчетное сечение конической передачи принято среднее сечение m.
Для удобства измерения размеры конических колес принято определять по внешнему торцу е зуба.
Различают внешний окружной модуль mtе, средний окружной модуль mtm (для прямых зубьев), средний нормальный модуль круговых зубьев mnm.
Связь между модулями:
mtе = mtm / (1 – 0,5Кbe); mtе = mnm / [(1 – 0,5Кbe)cosβm];
mnm = mtе(1 – 0,5 Кbe) cosβm,
где Кbe = b / Re – коэффициент ширины зубчатого венца по внешнему конусному расстоянию; принимают Кbe ≤ 0,3. Для большинства передач Кbe = 0,285;
βm – угол наклона зуба в среднем сечении.
Для прямых зубьев стандартным (ГОСТ 9563-60) является модуль mtе. В передачах с круговыми зубьями допускается не округлять модули по стандарту, так как одной и той же зуборезной головкой можно нарезать зубья в определенном интервале модуля за счет наладки резцов в головке. Модуль следует вычислять с точностью 0,0001 мм.
Диаметры делительных окружностей:
de = mtеz; dm = mtmz = mnmz / cosβm .
Внешнее конусное расстояние
Re = [(0,5de1)2 + (0,5de2)2]1/2 = 0,5de1(1 + u2)1/2.
Ширина зубчатого венца
b = Кbe Re = 0,285∙0,5de1(1 + u2)1/2 = 0,143de1(1 + u2)1/2.
Передаточное число
и = de2 / de1 = dm2 / dm1 = z2 / z1 = 2Resinδ2 / (2Resinδ1) = sinδ2 / sinδ1.
При δ1 + δ2 = 90О, где δ – углы делительных конусов, имеем δ1 = 90О – δ2 и тогда и = tgδ2. Так же δ2 = 90О – δ1 и и = сtgδ1.
Для передачи с круговыми зубьями профили зубьев конических колес в среднем нормальном сечении близки к профилям зубьев эквивалентных цилиндрических прямозубых колес. Приведение к последним осуществляют в два этапа:
-
К эквивалентным цилиндрическим косозубым колесам с углом наклона зубьев βm;
-
От них к эквивалентным прямозубым цилиндрическим колесам.
Из-за двойного приведения параметры называют биэквивалентными:
mv = mnm; bv = b; dvnm = dm / (cosδcos2βm); zvnm = z / (cosδcos3βm);
иv = zvnm2 / zvnm1 = z2cosδ1cos3βm / (z1cosδ2cos3βm) = (z2 / z1)tgδ2 = u2.
Для прямых зубьев в приведенных формулах следует принять βm= 0.
6.2 Силы в зацеплении
Рис. 13
1. Окружная сила (рис. 13) Ft = 2000Т / dm.
2. Радиальная сила на шестерне Fr1, равная осевой силе на колесе Fа2:
Fr1 = Fа2 = Ft (tgαncosδ1 sinβmsinδ1) / cosβm. (13)
3. Осевая сила на шестерне Fа1, равная радиальной силе на колесе Fr2:
Fа1 = Fr2 = Ft (tgαnsinδ1 ± sinβmcosδ1) / cosβm, (14)
где в формулах (13) и (14) αn – средний нормальный угол зацепления (αn ≈ 20°); βm = 35° – средний угол наклона зуба; δ1 – угол делительного конуса шестерни.
Знаки в скобках:
если смотреть с вершины делительного конуса О, то при совпадении вращения и наклона зубьев – верхние знаки, при отсутствии совпадения – нижние.
Знаки результата:
во избежание заклинивания зубьев при значительных зазорах в подшипниках необходимо обеспечить направление осевой силы Fа1 от вершины к внешнему торцу е1, т.е. сила Fа1 должна быть положительной. Это возможно при совпадении вращения и наклона зубьев.
Нормальная сила в зацеплении Fn = Ft / (cosαncosβm).
Для прямых зубьев в формулах сил следует положить βm = 0:
1) Ft1 = Ft2 = 2000Т / dm; 2) Fr1 = Fа2 = Fttgα cosδ1;
3) Fа1 = Fr2 = Fttgα sinδ1; 4) Fn = Ft / cosα.
6.3 Расчет на сопротивление контактной усталости
Исходной является формула (6), которая в параметрах эквивалентной цилиндрической прямозубой передачи имеет вид:
σН = ZEZHZε[FtKH (uv + 1) / (bvdv1uvUН)]1/2,(15)
где UН – коэффициент, учитывающий влияние на несущую способность вида конической передачи: для прямых зубьев UН = 0,85; для круговых зубьев UН является функцией передаточного числа и твердости зубьев (UН > 1). Нагрузочная способность передачи с круговыми зубьями в 1,4…1,5 раза выше, чем с прямыми.
Подставив в формулу (15) значения параметров, после преобразования получим формулу для проверочного расчета стальных конических зубчатых передач на сопротивление контактной усталости при Кbe = 0,285:
σН = 6,7∙104[T2КHu / (U H dе23)]1/2 ≤ σHP,(16)
где КН = KAKНβКНV – коэффициент нагрузки.
По ГОСТ 12289-76 стандартными являются dе2, и, b.
Поэтому в проектировочном расчете по формуле (16) целесообразно определять внешний делительный диаметр колеса
dе2′ = 1650[T2КHu / (U HσHP2)]1/3,
где T2 , Н∙м; σНР , МПа; dе2′, мм .
Диаметр dе2′ округляют в большую сторону по ГОСТ 12289-76 (Ra 20).
7. Расчет на сопротивление усталости при изгибе
Расчет ведут по зубу шестерни.
Исходной является формула (9) для эквивалентной прямозубой цилиндрической передачи, которая для зубьев конической передачи будет иметь вид:
σF1 = Ft КFYFS1 / (bmnmUF) ≤ σFP1; σF2 = σF1YFS2 / YFS1 ≤ σFP2, (17)
где КF = KAKFβКFV – коэффициент нагрузки на изгиб; UF – коэффициент, учитывающий влияние вида конической передачи при изгибе (для прямых зубьев UF = 0,85); YFS – коэффициент формы зуба: определяется по формуле (графикам) для прямозубых цилиндрических передач в зависимости от zvnm = z / (cosδcos3βm).
В проектировочном расчете открытых или закрытых высокотвердых передач (HRC > 56) из условий изгиба (формула (17)) определяют модуль:
mte′ = 14[T1КFYFS1 / (ψmUFz1σFP1)]1/3,
где ψm = b / mte – коэффициент ширины венца по внешнему модулю.
Величинами ψm и z1 следует предварительно задаваться. Модуль mte′ округляют по ГОСТ 9563-60 в большую сторону.
В силовых передачах mte ≥ 1,5…2 мм.
ЧЕРВЯЧНЫЕ ПЕРЕДАЧИ
1. Общие сведения
Червяк (z1)1 (рис. 5.1) – это винт с трапецеидальной или близкой к ней резьбой. Червячное колесо (z2) 2 – косозубое цилиндрическое колесо с вогнутыми по длине зубьями.
Червячная передача – зубчато-винтовая передача с преобразованием движения по принципу винтовой пары. Направление витков червяка и зубьев колеса одинаковое. Ведущим является червяк. Вращение определяется по типу завинчивания винта и гайки. При этом направление вращения колеса зависит от расположения червяка (верхний, нижний).
Тип передачи определяют по червяку.
В зависимости от формы внешней поверхности червяка передачи бывают с цилиндрическим 1 (рис. 5.1, а) или глобоидным 1 (рис. 5.1, б) червяком.
Рис. 5.1
На практике в основном применяют передачи с цилиндрическими червяками.
В зависимости от способов нарезания винтовой поверхности червяка различают линейчатые (винтовые поверхности могут быть образованы прямой линией) и нелинейчатые червяки.
Нарезание линейчатых червяков осуществляют прямолинейной кромкой резца на токарно-винторезных станках. Это архимедов (его обозначают ZA), конволютный (ZN) и эвольвентный червяки (ZI).
Нелинейчатые червяки нарезают дисковыми фрезами конусной (червяки ZK) или тороидальной (червяки ZT) формы. Витки нелинейчатых червяков во всех сечениях имеют криволинейный профиль: в нормальном к витку сечении выпуклый, в осевом сечении - вогнутый.
Для силовых передач следует применять эвольвентные и нелинейчатые червяки.
В червячных передачах стандартным (ГОСТ 19672-74) является осевой модуль.
На работоспособность червячной передачи сильно влияет жесткость червяка. Для исключения маложестких червяков введен стандартный параметр q – коэффициент диаметра червяка: q = 8; 10; 12,5; 16; 20; 25.
Диаметр делительной окружности, где толщина витка равна ширине впадины, червяка: d1 = mq.
Число заходов (витков) червяка z1 = 1, 2 и колеса d2 = mz2.
|
Рис. 5.2 | Угол профиля: для червяков ZA, ZN, ZI = 20; для ZT = 22. Делительный угол подъема витка червяка (рис. 5.2): tg = Ph / (d1), где Ph = Pz1 – ход витка, Р – шаг червяка; tg = mz1 / / (mq) = z1 / q. Зубья червячных колес нарезают червячными фрезами, которые являются копи- ями червяков с режущими кромками на витках |
|
Рис. 5.3 | и имеют больший (на два размера радиального зазора в зацеплении) наружный диаметр. Заготовка колеса и фреза совершают те же движения, какие имеют червячное колесо и червяк при работе. Основные геометрические размеры венца червячного колеса определяют в среднем его сечении (рис.5.3). Во избежание подреза ножки зуба при нарезании число зубьев z2 принимают больше 28; максимально 80. Оптимальным является z2 = 32…71. Диаметр делительной окружности |
Межосевое расстояние червячной передачи a = 0,5(d1 + d2) = 0,5m(q + z1).
Передаточное число u = z2 / z1. Так как z1 = 1, 2 и 4, z2 = 28…80, то в одной паре можно получить u = 7…80.
Для сокращения номенклатуры червячных фрез (копии червяков) по ГОСТ 2144 – 93 стандартизованы параметры: u, aw, m, q, z1, z2.
С целью вписания передачи с произвольно заданным передаточным числом u в стандартное межосевое расстояние aw выполняют смещение (xm) фрезы при нарезании зубьев колеса (рис. 5.3):
aw = a + xm; aw = 0,5m(q + z2 + 2x), (5.1)
отсюда x = (aw / m) – 0,5(q + z2).
Если a = aw, то x = 0 – передача без смещения. Предпочтительны положительные смещения – повышается прочность зубьев колеса.
Рекомендуют для передач с червяками:
-
ZA, ZN, ZI –1 x + 1 (предпочтительно x = 0,5). Из формулы (5.1) следует, что при aw = const за счет смещения в пределах x = 1 можем иметь z2 = z2ГОСТ 2, т.е. стандартное число зубьев z2ГОСТ можем изменять в пределах двух зубьев, что позволяет варьировать u = z2 / z1, отличая его от стандартного.
-
ZT 1,0 x 1,4 (предпочтительно x = 1,1…1,2).
2. Силы в зацеплении
Расстояние между внешним (параметры обозначают с индексом е) и внутренним (параметры – с индексом i) дополнительными конусами определяет ширину b венца.















