123097 (689358), страница 2
Текст из файла (страница 2)
– тривалість розгону
– шлях розгону
– тривалість гальмування від основної швидкості до посадкової
– шлях гальмування
Приймаючи шлях руху з посадковою швидкістю
, час руху з усталеною основною швидкістю
Тривалість руху з посадковою швидкістю
Розрахунок тривалості роботи при підйомі-опусканні крюка
Підйом пустого крюка
– тривалість розгону та гальмування
– шлях розгону
– тривалість руху з усталеною швидкістю при підійманні вантажу
Опускання пустого крюка
– тривалість розгону
– шлях розгону
– тривалість гальмування від основної швидкості до посадкової
– шлях гальмування
Приймаючи шлях руху з посадковою швидкістю
, час руху з усталеною основною швидкістю
Розрахунок тривалості роботи при напуску-виборі провису
– тривалість розгону (гальмування)
– шлях розгону (гальмування)
– тривалість руху з усталеною швидкістю при напуску-виборі провису
Побудова діаграми статичного навантаження двигуна
Передавальне число редуктора
де
– передбачувана номінальна швидкість обертання двигуна nн=580 об/хв.
Передавальне число одного ступеня = 3…5. Тоді число ступенів
Номінальний ККД редуктора визначається числом його ступенів і ККД однієї зубчастої пари, який дорівнює 0,95…96.
ККД механізму залежить від його завантаження
де
- номінальний ККД механізму;
- коефіцієнт завантаження,
Потужність на валу двигуна при підійманні вантажу
Значення ККД барабана і полиспаста дорівнюють 0,97.
При опусканні вантажу енергія направлена від механізму до двигуна. Тому потужність на валу двигуна
Потужність на валу двигуна:
– при підійманні крюка
– при опусканні крюка
Потужність, що розвивається двигуном при виборі і напуску провису каната
де
- кутова швидкість двигуна (
с-1);
- коефіцієнт, що враховує втрати в редукторі при роботі в холостому режимі,
За знайденими значеннями і тривалостями статичних потужностей будується діаграма статичного навантаження привода (рис. 1.3).
Еквівалентна за нагрівом потужність двигуна під статичним навантаженням:
Режим роботи двигуна – повторно-короткочасний, еквівалентну тривалість його включення:
%
де
– загальна тривалість статичного навантаження;
– час циклу,
;
– сумарна тривалість розгону (гальмування) привода.
По каталогу /1/ вибирається двигун номінальної потужності
де
- коефіцієнт запасу,
=1,3;
- номінальна тривалість включення двигуна,
= 25%.
Вибір двигуна
Паспортні дані обраного двигуна
Асинхроний двигун МТ 73–10
Pн=125 кВт; f=50 Гц; TBн=25%; Uн=380 В; nн=586 об/хв; Mmax/Mн=3,4; cosφн=0,73; Icн=286 А; Icx=170 А; Rc=0,0154 Ом; Xc=0,0731 Ом; Epн=442В; Ipн=175 А; Rp=0,0337 Ом; Xp=0,098 Ом; J=14,2
; Ke=0,808.
Уточнимо передавальне число, число ступенів, номінальний ККД редуктора і, якщо розбіжність між уточненими і попередніми значеннями величин
перевищує 7%, необхідно також уточнити потужності
і
.
Передавальне число і число ступенів збігаються з вказаною точністю, це свідчить, що й номінальний ККД редуктора, а також потужності
і
збігаються з раніше розрахованими.
1.3 Визначення режимів роботи двигуна
Робота підйомних лебідок кранів характеризується різноманітністю режимів роботи двигуна, вибір яких вимагає чітких уявлень про фізичні властивості сил і моментів, що діють в електроприводі.
Вибір та напуск провису
В обох випадках двигун, переборюючи втрати в редукторі, навантажується реактивним моментом опору:
де
– усталена кутова швидкість двигуна при виборі чи напуску провису.
На рисунку 1.4 наведені механічні характеристики механізму та двигуна при виборі (напуску) провису.
Середній динамічний момент двигуна:
,
де
– приведений до вала двигуна момент інерції обертових частин привода,
Оскільки середній динамічний момент відповідає середній швидкості
, то величина пускового моменту
двигуна:
Точки з координатами
,
і
,
визначають шукану реостатну механічну характеристику 1 (для характеристики 3 ті ж самі координати беруться з протилежним знаком).
Оскільки величина
за модулем менша абсолютного значення моменту
, то середній момент двигуна при гальмуванні:
Початковий гальмовий момент:
Точки з координатами
,
і
,
визначають шукану реостатну характеристику 2 (для характеристики 4 ті ж координати беруться з протилежним знаком).
Підйом вантажу
Величина середнього пускового моменту двигуна для забезпечення заданого прискорення
при підійманні вантажу:
де
– момент опору на валу двигуна при підійманні вантажу:
– середній динамічний момент двигуна при розгоні:
– швидкість двигуна при підійманні вантажу (на природній механічній характеристиці 11),
;
– приведений до вала двигуна момент інерції з урахуванням мас поступально рухомих елементів,
Приймаю початковий пусковий момент і момент переключення:
Тривалість розгону при підійманні вантажу
Середній момент двигуна при гальмуванні:
При
>0 повинний зберігатися руховий режим, що реалізується на ділянці а– b графіка 13 (рисунок 1.5).
Спуск вантажу
Статичний момент на валу двигуна:
Динамічний момент при опусканні вантажу:
Середній пусковий момент при опусканні вантажу:
Середній гальмовий момент при опусканні вантажу:
До посадкової швидкості працює в режимі противмикання (х-ка 15), для остаточної зупинки використовують динамічне гальмування (х-ка 16).
Підйом та опускання пустого крюка
Момент опору на валу двигуна при підійманні крюка:
Середній динамічний момент двигуна:
де
Пусковий момент двигуна:
Точки з координатами: (
;
) та (
;
) визначають характеристику 18 (рисунок 1.6)
Початковий гальмівний момент:
Точки з координатами: (
;
) та (
;
) визначають характеристику 19 (рисунок 1.6)
Момент опору на валу двигуна при опусканні крюка:
Середній динамічний момент двигуна:
Пусковий момент двигуна:
Початковий гальмівний момент:
Механічні характеристики двигуна при підйомі та опусканні крюка представлені на рисунку 1.6.
1.4 Побудова уточнених механічних та швидкісних характеристик двигуна
Розрахунок опорів:
Розрахуємо пускові опори.
Розрахуємо масштаб:
де
Розрахуємо опори для характеристик 5…11
Опори визначаємо за формулою:
,
де
– відстань на прямій
між пусковими характеристиками
Результати обчислень занесені до табл. 1.2
Таблиця 1.2 – Опори секцій підчас пуску двигуна при підіймань вантажу
| Ri, Ом |
|
|
|
|
|
|
|
| 26,5 | 15,34 | 8,9 | 5,12 | 2,9 | 1,74 |
Розрахунок проводимо графоаналітичним методом за рисунком 1.5
Розрахунок опорів для всіх характеристик визначають згідно формули:
,
де
– момент на характеристиці при
.
Результати розрахунків приведені у табл. 1.3
Таблиця 1.3 – Опори кола ротора для різних характеристик двигуна
| № х-ки | 1/3 | 2/4 | 12 | 15 | 18/20 | 19 | 21 |
| Ri, Ом | 1.3492 | 0.398 | 0.3254 | 0.5115 | 1.4056 | 0.3696 | 0.4376 |
| Мі | 3204 | 945,05 | 772,2 | 1214,55 | 3337,9 | 877,75 | 1039,25 |
Побудову механічних характеристики виконано для всіх використаних режимів роботи (окрім динамічного гальмування):
де
– поточний і критичний моменти двигуна;
– поточне і критичне ковзання;
- коефіцієнт, що дорівнює відношенню
(
- активний опір фази статора,
– приведений до статора сумарний активний опір фази роторного кола).
Параметри
та
розраховуються за каталожними даними двигуна.
– приведений до статору активний опір
x2’ – приведений до статору індуктивний опір ротору
Розрахунок уточнених механічних та швидкісних характеристик проведемо за допомогою програмного пакету «Matlab» (рисунок 1.7, рисунок 1.8)
Побудова швидкісних характеристик для усіх режимів роботи двигуна (окрім динамічного гальмування):















