123030 (689342), страница 3
Текст из файла (страница 3)
t
=20°С (приложение I).
3. Расход тепла
3.1 Физическое тепло стали
0,91119-250.103[0,7-1500+ 272,16+ 0,837(1600 –1500)1 - 320251,39-103 кДж - 320,25 ГДж.
Здесь Dст–0,91119 выход стали (cm. материальный баланс);
с
=0,7 кДж/(кг К)–удельная теплоемкость твердой стали, средняя в интервале температур 0–1500 °С;
=0,837 кДж/(кг-К) –то же, жидкой стали средняя в интервале температур 1500–1600 °С;-
= 1500
C – температура плавления стали;
= 272,16 кДж/кг – скрытая теплота плавления стали.
2. Физическое тепло стали, теряемой со шлаком
= 0,00734-250- 10
0.7-1500 + 272,16 + 0,837(1600 –1500)] = 2579,753-103 кДж = 2,58 ГДж.
3. Физическое тепло шлака
Qшл = (1,25-1550+ 209,5) 0,06 250 103 +(1,25 1600+209,35) 0,0628 250 103 = 66889,545 103 кДж=66,89 ГДж.
Здесь 1,25 кДж/(кг-К) –теплоемкость шлака, средняя в интервале температур 0–1600°С;
209,35 кДж/кг – скрытая теплота плавления шлака;
0,06 и 0,0628 – доля шлака скаченного и конечного соответственно (см. материальный балане).
4. Тепло, уносимое продуктами сгорания при средней
температуре 1yx= 1600 °С
=BiyxVyx В 2592,64 10,34=26807,9 В кДж =0,0268 В ГДж. Здесь:
ico2...0,0955 3815,86 = 364,41
i
о...0,1875 2979,13 = 558,59
,...0,7170.2328,65 = 1669,64
= 2592,64 кДж/м3.
Доли СО2, Н2О, N2 и Vyx заимствованы из табл. 17, их энтальпии – из приложения II при tух== 1600 °С.
5. Тепло, расходуемое на разложение известняка
1779,5 0,0507 250 103=22555 103кДж=22,56 ГДж.
Здесь 1775,5 кДж/кг – теплота разложения 1 кг известняка; .
0,0507 –доля известняка (см. материальный баланс).
6. Тепло, затрачиваемое на испарение влаги и нагрев
паров воды до tyx=1600°C.
= 0,000786 250 10
4,187 100+ 2256,8+1,88(1600– 100)]22,4 18 = 1297594,2 кДж - 1,3 ГДж.
Здесь 4,187 кДж/(кг-К) –теплоемкость воды, средняя в интервале температур 0–100 °С;
1,88 кДж/(кг-1<) –то же, пара в интервале температур 100–1600°С;
2256,8 кДж/кг – скрытая теплота испарения 1 кг воды;
0,000786 –доля Н2О в продуктах плавки (см. материальный баланс).
7. Тепло, затраченное на нагрев выделяющихся из ванны газов до t
=1600°C.
СО2...3815,86-0,02146-250.103-22,4:44 = 10422,15-Ю3
СО,..2526,85-0,0б279.250.108.22,4:28 = 31732Д8-1б3
SO2,..3815,86-0,00101.250-103-22,4;64-337,23.103
N2...2328,65-0,00320.250-103-22,4;28 1490,33-103
О2…24б3,97-О,00664-250-Ю3-22,4:32 = 2863,13-103
= 46845,02-103 кДж = 46,85 ГДж
Здесь первый столбик чисел – энтальпия газов при tух =1600°С (приложение 2); второй столбик чисел –доля газа от массы садки (см. материальный баланс).
8. Тепло, теряемое с уносимыми частицами Fe2O3
= 0,01571 250 103(1,23 1600 +209,35)= 16773,76 103 кДж =16,78 ГДж.
9. Потери тепла с охлаждающей водой.
В рабочем пространстве двухванной печи водой охлаждаются заслонки окон (расход воды по 1,67- 10
м3/с)„ змеевики столбиков (по 0,56-10
3 м3/с), амбразура шлаковой летки (1,12-10
3 м3/с) и кислородные фурмы (по 0,28 10
3 м3/с). Принимая, что повышение температуры воды в водоохлаждаемом элементе не должно превышать 20 К, находим потери тепла с охлаждающей водой;
Заслонки 3-1,67-10-3-4,187- 103-14400-20=6041,34 103
Змеевик 6-0,56- 10
.4,187-103-14400.20=4051,68- 103
Амбразура 1-1,12-10
.4,187- 103-14400-20=1350,56- 103
Фурмы 3-0,28-10
-4,187-103=6840-20-481,14-103
=11924,72- 10
Дж= 11,92ГДж
Здесь первый столбец чисел – количество водоохлаждаемых элементов; второй – расход воды, м3/с; третий – теплоемкость воды, кДж/(м3К); четвертый – время теплового воздействия на водоохлаждаемый элемент, с; пятый – разность температур выходящей и входящей воды, К.
Рамы завалочных окон и пятовые балки свода имеют испарительное охлаждение. Принимая расход химически очищенной воды на каждый элемент 0,11- 10
м3/с найдем общий расход воды:
Рамы завалочных окон 3-0, 11 10
=0,33- 10
Пятовые балки передней
Стенки 3-0,11 103=0,33-I0
Пятовые балки задней стенки 3.0,11-10
=0,33-.10
Всего =0,99-10
3 м
/с
Считая, что выход пара составляет 90 % (0,89- 10
3м3/с), найдем потери тепла с испарительным охлаждением.
4,187-103 0,99.10
(100 – 30) 14400 + [2256,8 +1,88(150 -100)
103-0,89-10
14400 18:22,4 =27952,17-103 кДж = 27,95 ГДж.
Суммарные потери тепла с охлаждающей водой равны
Qохл = 11,92 + 27,95=39,87 ГДж.
10. Потери тепла через футеровку [формула (155)].
Потери тепла через свод
14042,073-103 кДж = 14,04 ГДж
Коэффициент теплопроводности магнезитохромита согласно приложению XI при средней температуре свода 0,5 (1580+300)=940°С равен
=4,1- 0,0016-940=2,6 Вт/(м К). Коэффициент теплоотдачи конвекцией равен
=10+0,06 300=28 Вт/(м2 К). Толщина футеровки
0,5(0,46+0,10)=0,28 м взята средней за кампанию печи.
Потери тепла через стены печи
Задняя стенка имеет слой магнезита средней толщиной
0,75 м и слой легковесного шамота толщиной
=0,065 м. Принимая температуру наружной поверхности футеровки равной 200°С, а на границе раздела слоев 1100°С, согласно приложению XI получим
м - 6,28 0,0027 0,5 (1580 + 1100) = 2,66 Вт/(м К) и
= 0,314 + 0,00035 0,5(1100 + 200) = 0,54 Вт/(м К) и
а = 10 + 0,06-200 = 22 Вт/(м К).
Тогда
= 1159,32 10
кДж=1,16 ГДж
Потеря тепла через переднюю стенку
12,54 14400=1398,8 10
кДж=1,4 ГДж
Здесь
= 6,28–0,0027(1580 + 200)/2 = 3,88 Вт/(м К).
Потери тепла через под равны
= 5100 102,4 14400 = 6475,78-103 кДж = 6,48 ГДж.
Здесь: 5100 Вт/м2 –удельные потери тепла через под; 102,4 м2 – площадь пода. Всего теряется через футеровку
=14,04 + 1,16 + 1,4 + 6,48= 23,08 ГДж.
11. Потери тепла излучением через окна печи [формула
(156)]
5,7 0,65 (
)
1,6 1,7 5400 =
= 6697,34 103 кДж = 6,7 ГДж.
12. Потери тепла на диссоциацию СО2 и Н2О примем
равными 2 % от тепла, получаемого при сжигании природного газа, т. е.
Qдисс = 0,02 0,035 В = 0,0007 В ГДж.
13. Потери тепла с выбивающимися газами и примем
равными 2,5 % от тепла, получаемого при сжигании природного газа
= 0,025-0,035 3 = 0,00088 В ГДж.
Расход природного газа найдем из уравнения теплового баланса
0,82 + 194,26 + 322,76 + 8,81 + 0,035 В + 0,000245 В + 0,79 = 320,25 + 2,58 + 66,89 + 0,0268 В 22,56 +1,3 + 46,85 + 16,78 + 39,87 + 23,08 + 6,7 + 0,0007 В + +0,000885 или
0,006865 В = 20,21,
откуда
В=2943,9 м3.
Тепловой баланс рабочего пространства камеры двухванной печи представлен в табл. 43.
Средняя тепловая нагрузка равна
Qcp = 35, 0 2943, 9:14400 = 7,155 МВт. Тепловая нагрузка холостого хода равна (39,87+ 23,08+ 6,7): 14400 =4,84 МВт.
Таблица 2. Тепловой баланс камеры двухванной печи
| Статья прихода | ГДж {%) | Статья расхода | ГДж (%) |
| Физическое тепло: скрапа .... чугуна .... воздуха . . . Тепло реакций: экзотермических шлакообразования ..._.. Тепло от горения природного газа | 0,82(0,13) 194,26(30,78) 1,51(0,24) 322,76(51,13) 8,81(1,39) 103,04(16,33) | Физическое тепло: Потери тепла: | 320,26(50,74) 2,58(0,41) 66,89(10,55) 22,56(3,57) 1,30(0,21) 46,85(7,42) 16,78(2,66) 39,87(6,33) 23,08(3,66) 6,70(1,08) 2,09(0,33) 2,63(0,42) 79,60(12,62) |
| Итого | 631,20(100,0) | ||
| Итого | 631,20 (100,0) |
Расход топлива по периодам плавки
Период выпуска и заправки (продолжительность 1440 с). Примем, что тепловая нагрузка в период выпуска и заправки равна 75 % средней тепловой нагрузки. Тогда
= 0,75-7,155=5,366 МВт, а расход природного газа
5,366-1440/35,0 = 220,64 м3/период.
Период завалки и прогрева (продолжительность 4680 с). В этом периоде поддерживают максимальную тепловую нагрузку, составляющую 125 % от средней. Тогда
Q2 = 1,25-7,155 = 8,94 МВт
и В2 - 8,94-4680/35,0 = 1195,69м
/период.
Период заливки чугуна и плавления (продолжительность 4680 с). Обычно период заливки и плавления проходит при средней тепловой нагрузке. Тогда
Q3 = 7,155 МВт и В
= 7,155 4680/35,0=956,87 м
/период.
Период доводки (продолжительность 3600 с) Q4 ==(7,155 14400- 5,366 1440- 8,94 4680- 7,155 4680)/3600=5,55 МВт. Тогда В4 = 5,55 3600/35,0=570,7 м3/период.
Правильность расчета проверяем, суммируя расходы природного газа по периодам
220,64 + 1195,69 + 956,87 +570,70 - 2943,9 м3, что соответствует значению, найденному из теплового баланса.
Заключение
Таким образом, двухванная печь имеет много эксплуатационных и сантехнических недостатков. В связи с этим и несмотря на то, что двухванные печи имеют значительную производительность, их следует рассматривать как временную, промежуточную конструкцию, соответствующую сложному (в техническом и экономическом отношении) периоду полного перехода нашей металлургии с мартеновского на конвертерный способ производства стали.
Список использованных источников
1 Металлургическая теплотехника в 2-х томах 1. Теоретические основы: Учебник для вузов В. А. Кривандин, В. А. Арутюнов, Б. С.Мастрюков и др. М.: Металлургия, 1986. 424. с.
2 Металлургические печи: Атлас учебное пособие для вузов В. И. Миткалинный, В. А. Кривандин, В. А. Морозов и др. М.: Металлургия 1987.
















