122877 (689276), страница 3
Текст из файла (страница 3)
L - длина заготовки, мм
1=Ку
0=0,06387=23,22 мкм
2=Ку
1=0,0423,22 =0,93 мкм
Ку - коэффициент уточнения
Черновой 0,06, чистовой 0,04
Определяем минимальные припуски
Zimin=(Rz+h)i-1+
i-1+
i
Rzi-1 - высота неровностей профиля на предшествующем переходе.
hi-1 - глубина дефектного поверхностного слоя на предшествующем переходе.
i - погрешность установки заготовки на выполняемом переходе.
Z1min=(0,25+0,24)+0,387+0,11= 0,99 мм
Z2min=(0,12+0,12)+ 0,023+0,11= 0,37 мм
Определяем максимальные припуски
Zimax=Zimin+Ti-1
Z1max=0,99+0,6= 1,59 мм
Z2max=0,37+0,14= 0,51 мм
Определяем общий припуск на боковые стороны наружного контура
Zобщ= Z1max+ Z2max=1,59+0,6= 2,19
2,5мм
Табличный метод.
| Размер | Припуск (Z) | Припуск (2Z) | Округленный размер |
| 1,8 | 2,3 | 4,6 | 5,5 |
| 2 | 2,3 | 4,6 | 7 |
| 3 | 2,3 | 4,6 | 8 |
| 4 | 2,3 | 4,6 | 8,5 |
| 10 | 2,3 | 4,6 | 14,5 |
| 82 | 2,4 | 4,8 | 87 |
| 99 | 2,4 | 4,8 | 104 |
2.3 Анализ базового техпроцесса.
В заводском технологическом процессе
Таблица 5
| Наименование операции | Количество операций |
| Слесарные операции | 3 |
| Операции контроля | 3 |
| Разметочные операции | 1 |
| Вспомогательные операции | 2 |
| С применением металлорежущих станков | 3 |
Таблица 6
| № опер. | Содержание | Модель станка |
| 020 | Фрезерная. Обработка заготовки. | ФП17М |
| 030 | Фрезерная .Обработка наружного контура и часть внутреннего. | ФП17М |
| 060 | Фрезерная. Обработка оставшейся части внутреннего контура. | ФП17М |
| 095 | Фрезерная. Обработка внутреннего контура со второй стороны. | ФП17М |
Операции №:
010, 025, 055 – контрольные
040 – разметочная
020, 035,050 – слесарные
005, 060, – вспомогательные
2.4 Краткая характеристика разрабатываемого технологического процесса.
При разработке технологического процесса предлагается использовать меньшее количество оборудования, так как обработка ведется на станках с ЧПУ и при развитии современного машиностроения и усовершенствования приспособлений дает возможность все больше применять высокопроизводительное оборудование. Постепенно уменьшаются разметочные и слесарные операции.
В данном проекте предлагается использовать для обработки деталей оборудование: фрезерный станок 6Н13П, фрезерный станок МА-655А, радиально-сверлильный станок 2А125 и верстак под слесарные операции.
Краткое описание обработки:
I этап: Обработка двух базовых отверстий на универсальном станке 2А125.
II этап: Обработка внешнего и внутреннего контура на станке с ЧПУ МА-655А.
III этап: Доработка выемки на универсальном станке 6Н13П.
IV этап: Покрытие и контроль.
2.5. Выбор технологического оборудования,
Применяемое оборудование.
Фрезерный станок с ЧПУ модели DMU-125P. Станок позволяет обрабатывать криволинейный контур и подходит по габаритным размерам, мощности главного двигателя, оборотам шпинделя.
-
Защитное ограждение
-
Инструментальный магазин
-
Шпиндельная бабка с главным приводом
-
Зона обслуживания (гидравлика, пневматика, централизованная смазка)
-
Пульт управления с системой ЧПУ
-
Рабочий стол
-
Устройство подачи СОЖ
Техническая характеристика станка.
1. Число оборотов (бесступенчато) 20-12000 мин-1
2. Скорость подачи (бесступенчато) 20-10000 мм/мин
3. Ускоренный ход: ось Х, У, Z 40 м/мин
4. Разрешающая способность 0,001 мм
5. Позиционный допуск 0,010 мм
6. Рабочий стол: ЧПУ - круглый стол 1250 х 1000
-
Число Т-образных пазов/размер:
паз для базирования (центральный) шт. 1 / 18Н7
пазы для крепления шт. 9 / 18Н12
9. Центральное отверстие 50Н6 мм
10. Частота вращения стола 8 1/мин
11. Подача 2900о
12. Конус шпинделя SK40 по DIN 69871
Для обработки базовой поверхности выбран станок:
Вертикально фрезерный станок 6Н13П
| Параметр | Величина |
| Рабочая поверхность стола (мм) | 320х1250 |
| Мощность двигателя (кВт) | 7,5 |
| КПД станка | 0,8 |
| Число оборотов шпинделя: | |
| max | 1600 |
| min | 31,5 |
| Подачи стола продольные и поперечные (мм/мин) | |
| max | 1250 |
| min | 25 |
| Подачи вертикальные (мм/мин) | |
| max | 416,6 |
| min | 8,3 |
Для доработки отверстий выбираю: вертикальный сверлильный станок 2А125
Таблица 11
| Параметр | Величина |
| Рабочая поверхность стола Наибольшее расстояние от торца шпинделя до рабочей поверхности стола Вылет шпинделя Наибольший ход шпинделя Наибольшее вертикальное перемещение: Сверлильной (револьверной) головки стола Конус Морзе отверстия шпинделя Число скоростей шпинделя Частота вращения шпинделя, об/мин Число подач шпинделя (револьверной головки) Подача шпинделя (револьверной головки) мм/об Мощность электродвигателя привода главного движения, кВт Габаритные размеры: Длина Ширина Высота Масса, кг | 710 х 1250 828 200 - 700 - 500 - 1, 2, 3 12 22 – 1000 12 0,05 – 2,24 11 1500 1800 3650 5000 |
2.6.Выбор приспособления и режущего инструмента.
Одним из показателей экономически рациональной подготовки производства является сокращение трудоемкости и сроков проведения всего подготовительного цикла, основная часть которого в машиностроительном производстве включает проектные работы, изготовление и отладку специальных средств технологического оснащения.
Выполнение этих требований в значительной мере зависит от состава и количества станочных приспособлений, являющихся наиболее трудоемким видом оснастки. Их следует выбирать с учетом конкретных условий подготовляемого производства.
В зависимости от масштаба производства (массовое, серийное, мелкосерийное) и технологических факторов станочные приспособления по назначению и конструкции могут быть разделены на: универсальные, универсально-наладочные (переналаживаемые), универсально-групповые, сборно-разборные, специальные
В среднесерийном производстве лучше всего применить специальное фрезерное приспособление, так как они имеют постоянные установочные базы и зажимающие элементы, и предназначены для установки и закрепления одинаковых по форме и размерам заготовок.
Специальные приспособления применяются в производствах, где по условиям работы станки на значительное время закрепляются за определенной операцией.
Инструмент-это технологическая оснастка, предназначенная для воздействия на предмет труда с целью изменения его состояния (состояние предмета труда определяется с помощью шаблона и измерительного прибора).
Конструкция и размеры инструмента для заданной операции зависят от вида обработки, размеров обрабатываемой поверхности, свойств материала заготовки, требуемой точности обработки и шероховатости обрабатываемой поверхности
Выбор режущего инструмента.
Фреза концевая – предназначена для обработки деталей на станках с ЧПУ
Фреза R390-032A32-11H
Фреза R216.34-16045-AC32N
Сверло- зенкер из быстрорежущей стали с коническим или цилиндрическим хвостовиком, предназначено для получения отверстий в сплошном металле.
Сверло - зенкер ф29,5Н9
Развертка предназначена для получения отверстий, в предварительно обработанном металле – более высокой частоты и точности, т.е. чистовая обработка отверстий.
Развертка TITEX F1352х30
2.7 Применяемые методы и инструменты контроля.
Под контролем в широком смысле имеется в виду понятие, включающее в себя определение как количественных, так и качественных характеристик, например, контроль дефектов наружной поверхности, контроль внутренних пороков металла и др.
В технике наряду с понятием «контроль» широко применяется понятие «измерение».
Измерение - нахождение физической величины с помощью специальных технических средств.
Точность измерений - качество измерений, отражающее близость их результатов к истинному значению измеряемой величины.
Погрешность измерения - отклонение результата измерения от истинного значения измеряемой величины.
Под методом измерения понимается совокупность используемых измерительных средств и условий их применения.
Методы измерения зависят от используемых измерительных средств и условий измерений и подразделяются на абсолютные, сравнительные, прямые, косвенные, комплексные, элементные, контактные и бесконтактные.
Абсолютный метод измерения характеризуется тем, что прибор показывает абсолютное значение измеряемой величины.
Сравнительный метод отличается тем, что прибор показывает отклонение значения измеряемой величины от размера установочной меры или иного образца.
Так, к абсолютному методу относят измерение микрометром, штангенциркулем, длинномером, а к сравнительному измерение оптиметром, индикаторным нутромером.
Прямой метод измерения заключается в том, что значение искомой величины или ее отклонение отсчитывают непосредственно по прибору. К этому методу относят контроль диаметров микрометром или индикатором на стойке.
При косвенном методе значение искомой величины или отклонение от нее находят по результатам измерения другой величины, связанной с искомой определенной зависимостью. Например, контроль угла синусной линейкой, диаметра по длине дуги и углу, опирающемуся на нее.















