122857 (689268), страница 2
Текст из файла (страница 2)
Вторичное напряжение, подаваемое на электроды в зависимости от конструкции переключающего устройства переключают как при отключенной печи, так и под нагрузкой. Оптимальный электрический режим на каждой ступени напряжения поддерживают с помощью автоматических регуляторов.
Рафинировочные ферросплавные печи имеют мощность 3,5 - 7 MB-А и служат для выплавки ферросплавов с низким содержанием углерода; они работают с выпуском сплава и шлака после окончания плавки. Они имеют круглую открытую ванну, а в остальном по своему устройству они ближе к дуговым сталеплавильным печам, на базе которых их конструируют.
Печи делают наклоняющимися, в связи с чем ванну крепят на люльке с механизмом ее наклона; ванна оборудована механизмом вращения, обеспечивающим ее круговое или возвратно-поступательное вращение в процессе плавки. Механизмы перемещения электродов и электрододержатели такие же, как в дуговых сталеплавильных печах; эти механизмы опираются не на люльку, а на пол цеха и при наклоне ванны электроды не наклоняются. Электроды применяют как самоспекающиеся, так и графитированные. Загрузка шихты такая же, как в восстановительных ферросплавных печах.
Шихту в ферросплавные печи загружают сверху из специальных печных карманов (бункеров) 1, расположенных на некоторой высоте над печью и оборудованных затворами. После открывания затвора материал по труботечке 2 ссыпается в печь.
В закрытые печи материалы подают двумя способами. Один из них предусматривает поступление материала из течки в воронку 3, расположенную концентрически вокруг электрода и далее в печь через кольцевой зазор между отверстием в своде и электродом. Во втором случае материал из труботечки попадает в печь через отверстие в своде.
В первом случае шихта располагается в печи конусом вокруг электродов, во втором - в стороне от электродов под загрузочными течками.
Рисунок 4 - Способы загрузки шихты в ферросплавные печи с помощью воронки (а) и через отверстие в своде (б)
В открытые печи шихта из печных карманов также подается по труботечкам (лоткам), но их можно направить в определенное место ванны. Применяют также бросковые машины, передвигающиеся по рельсам вокруг печи; рабочий орган машины - лоток (лопата), вмещающий ~25кг шихты, совершает бросковые движения.
Доставку материалов в печные карманы из шихтового отделения ферросплавного цеха осуществляют несколькими способами. В шихтовых отделениях сырые материалы проходят специальную переработку и подготовку: их дробят, сортируют на фракции нужной крупности, некоторые материалы промывают и сушат.д.алее во многих цехах материалы наклонным ленточным конвейером или скиповым подъемником доставляют в плавильный корпус цеха в бункеры, расположенные вблизи печей, а из них порциями с помощью дозировочной саморазгружающейся рельсовой тележки загружают в печные карманы. В ряде цехов материалы из дозировочных бункеров шихтового отделения доставляют системой конвейеров непосредственно в печные карманы.
2. Производство ферросплавов
2.1. Производство ферросилиция
Ферросилиций применяют для раскисления и легирования стали и в качестве восстановителя при производстве некоторых ферросплавов. В электрических печах выплавляют ферросилиций различных марок с содержанием кремния от 19-23% (сплав ФС20) до 92-95% (сплав ФС92). При содержании кремния в сплаве в пределах 50-60% и при загрязнении его фосфором и алюминием сплав рассыпается в порошок с выделением ядовитых летучих соединений. Поэтому сплав такого состава заводы не выпускают. Помимо кремния ферросилиций содержит железо и ряд примесей. В сплавах, содержащих 41-47% кремния и более, имеется до 0,1-0,2% С, до 0,2-0,6% Мп, до 0,05% Р, до 0,02% S и до 1,5-2,5% Al. В малокремнистых сплавах(19 - 27% Si) содержание углерода достигает 0,6-1,0%. Следует отметить, что ферросилиций содержит мало углерода, несмотря на применение углеродистого восстановителя и угольной футеровки печи. Объясняется это тем, что в присутствии кремния растворимость углерода в сплаве уменьшается. Чем больше в сплаве кремния, тем меньше сплав содержит углерода.
Наиболее распространены сплавы ФС45 и ФС75, содержащие кремния соответственно около 45 и 75%.
Рудной составляющей шихты являются кварциты, содержащие не менее 95% SiO;, не более 0,02% РгО5, и возможно меньше шлакообразующих примесей (глинозема). Кварцит дробят до кусков размером 25-80 мм и отмывают от глины.
Для получения заданного содержания кремния в сплаве в шихту вводят рассчитанное количество железа в виде измельченной стружки углеродистой стали; железо, кроме того, облегчает восстановление кремния.
В качестве восстановителя при выплавке ферросилиция применяют металлургический коксик кусками размером 10-25 мм (отсев доменного кокса). Иногда для замены части кокса применяют более дешевые материалы: полукокс - продукт коксования углей при 700 °С и материалы, содержащие карборунд SiC (отходы электродного и абразивного производств).
Ферросилиций выплавляют в круглых печзх различной конструкции - вращающихся и стационарных, открытых и закрытых мощностью 16,5-115 МВД при рабочем напряжении 130-250 в. Рабочий слой футеровки выполняют из углеродистых блоков. Печь имеет две летки, одну рабочую и другую резервную.
Шихту составляют исходя из того, что SiO; кварцита восстанавливается на 98% и все железо стружки переходит в сплав.
Плавку ведут непрерывным процессом. На колошник печи сверху непрерывно загружают шихту, а сплав периодически выпускают через летку. Глубина погружения электродов в шихту должна быть большой (от 800 мм на малых печах до 2700 мм на больших). Расстояние от концов электродов до подины должно составлять 300-600мм. При загрузке перемешанных шихтовых материалов в печь стремятся создать и поддерживать вокруг электродов шихту в виде возвышающихся конусов, которые затрудняют выход газов здесь и уменьшают вследствие этого потери тепла и кремния.
Процесс плавки происходит главным образом у электродов, под которыми горят электрические дуги. Здесь в зоне дуг в шихте образуется полость ("тигель") с очень высокой температурой. Стенки тигля непрерывно оплавляются, кремнезем восстанавливается, кремний растворяется в жидком железе, жидкий сплав опускается на подину, а новые порции шихты - в зону реакций. Кремний восстанавливается твердым углеродом по реакции
SiO2 + 2С = Si + 2СО - 635096 Дж,
идущей с большой затратой тепла, теоретическая температура ее начала равна 1554 °С. В присутствии железа восстановление кремния облегчается и идет при более низких температурах, поскольку железо, растворяя кремний, выводит его из зоны реакции, что сдвигает равновесие этой реакции вправо, в сторону восстановления кремния. Чем больше железа в шихте, тем при более низкой температуре происходит восстановление кремния и образование ферросилиция.
Железо облегчает ход процесса также тем, что разрушает карбид кремния SiC. Последний образуется при избытке восстановителя (SiO2 + 2С = SiC + 2CO) и, являясь тугоплавким (Тпл > 2700 °С), накапливается внизу печи, загромождает ее, снижая производительность.
В зоне высоких температур идет частичное восстановление алюминия и кальция из содержащихся в кварците и золе кокса А12О3 и СаО, поэтому ферросилиций содержит до 2,5% Al и до 1,5% Са. В восстановительных условиях плавки более 60% фосфора из шихтовых материалов переходит в сплав. Сера целиком улетучивается.
Из невосстановившихся оксидов шихты формируется шлак, его количество равно 2-6% от массы сплава. Типичный состав шлака,%: 25-40 SiO2, 20-40 А12О3, 10-25 СаО, 2-10 SiC, 3-8 ВаО, менее 2 MgO и FeO. Шлаки имеют высокую температуру плавления (1500-1700 °С) и вязкость. Шлак выходит из печи через летку вместе со сплавом. При повышенной вязкости часть шлака остается в печи, что может вести к зарастанию ванны.
Образующийся в высокотемпературных зонах восстановления газ СО поднимается вверх, нагревая шихту, причем он стремится двигаться вверх над зонами восстановления у электродов. Чтобы повысить степень использования тепла газов, шихту загружают у электродов, создавая здесь более высокий слой располагающихся конусом материалов. Высокий слой шихты у электродов препятствует подъему здесь газов и они выделяются дальше от электродов, нагревая большее количество шихты. При вращении ванны неподвижные электроды разрыхляют шихту, поднимающиеся газы более равномерно распределяются по сечению ванны.
Плохо прогретые у стен печи материалы спекаются в плотный монолит (гарнисаж).
Нормальный ход печи характеризуется медленным опусканием электродов по мере их сгорания и равномерным оседанием шихты вокруг этих электродов.
Сплав выпускают 12-20 раз в сутки. Вскрытие летки производят прожиганием электрической дугой или кислородом, пробиванием железным прутом или при помощи бура. По окончании выпуска летку закрывают конической пробкой из смеси электродной массы и песка или огнеупорной глины и коксика.
Сплав выпускают в ковш, футерованный шамотным кирпичом или графитовой плиткой, и затем разливают в плоские изложницы или в чушки на разливочной машине конвейерного типа, аналогичной машине для разливки чугуна.
2.2. Производство углеродистого ферромарганца
Ферромарганец применяют для раскисления и легирования стали. В ферросплавных печах выплавляют углеродистый ферромарганец двух марок: ФМн78 и ФМн70, которые содержат марганца соответственно 75-82 и 65-75%. В сплавах также содержится 5-7% С, от 1 до 4-6% Si, 0,3-0,6% Р, 0,02% S.
Марганцевые руды содержат много фосфора, поэтому и в ферромарганце содержание этого вредного элемента высокое.
Для выплавки ферромарганца используют неофлюсованный и офлюсованный марганцевый агломерат и концентраты марганцевых руд, железорудные окатыши либо железные руды или железную стружку и иногда известняк. В рудах марганец находится в виде МпО2, Мп2О3, МпэО4 и МпСО3, основной примесью является SiO2. Содержание марганца в рудах составляет 16-57%. Большая часть добываемых марганцевых руд бедные; их обогащают, получая концентрат с содержанием > 25-43% Мn; концентрат, как правило, подвергают агломерации, агломерат содержит > 36-45% Мn. Коксик применяют размером 3-15мм. Содержание золы в нем не должно быть более 12%, влаги - не более 11%, фосфора - не более 0,02%.
Углеродистый ферромарганец выплавляют флюсовым или бесфлюсовым методом. Во втором случае процесс ведут без добавки извести и получают, кроме углеродистого ферромарганца, еще бесфосфористый марганцевый шлак (около 50% МnО и менее 0,02% Р). Такой шлак используют вместо марганцевой руды для выплавки силикомарганца или малофосфористых марганцевых сплавов.
Бесфлюсовым методом, перерабатывают богатые руды, а бедные руды с повышенным содержанием кремнезема - флюсовым методом. Выплавляют углеродистый ферромарганец в закрытых печах мощностью до 75 MB • А с угольной футеровкой, печи круглые и прямоугольной формы. При бесфлюсовом процессе шихтой служит марганцевый концентрат (агломерат), содержащий более 48% Мn, коксик и железорудные окатыши либо железная стружка (соответственно в количестве 2100-2600, 450-500 и 100-200 кг/т сплава). При флюсовой плавке расход материалов примерно такой же; при этом для получения требуемой основности шлака (1,1-1,4) используют либо офлюсованный агломерат, либо неофлюсованный с добавкой известняка (до 0,7-0,9 т/т сплава). Зачастую в печь вводят отходы ферромарганца.
Плавку ведут непрерывным процессом при напряжении 110 - 160 В; невысокое напряжение желательно, чтобы уменьшить перегрев ванны и потери марганца в результате его испарения и улета (марганец обладает высокой упругостью пара и при высоких температурах значительная часть его испаряется; в нормальных условиях производства потери в результате испарения достигают 8-10%). Электроды погружают в шихту на глубину 1200-1500 мм. Вследствие глубокой посадки над зоной высоких температур находится большой слой шихты. Пройдя такое расстояние, шихтовые материалы попадают в зону прямого восстановления хорошо нагретыми. Большая высота необходима также, чтобы пары марганца успевали конденсироваться в верхних слоях шихты. Расстояние от конца электродов до пода поддерживают в пределах 800-] 300 мм; удаление электродов от пода предотвращает перегрев металла и испарение марганца.
Строение ванны по высоте следующее: слой твердой шихты, зона плавления (вблизи нижней части электродов), слой жидкого шлака (у концов электродов и ниже них), слой жидкого сплава (без полостей под электродами).
Высшие оксиды марганца (МпО2, Мп2О3 и Mn3Oj непрочны и легко восстанавливаются оксидом углерода отходящих газов при низких температурах вверху слоя шихты. Оксид МпО восстанавливается в высокотемпературных приэлектродных зонах по следующим реакциям, протекающим со значительной затратой тепла:
МnО + С = Мn + СО - 288290 Дж
3 МnО + 4С = Мn3С + 3 СО - 780800 Дж.
Теоретическая температура начала этих реакций равна соответственно 1420 и 1227 °С, в связи с чем преимущественное развитие получает восстановление по второй реакции, и сплав поэтому содержит много углерода. Протекает также восстановление углеродом железа из окатышей. Насыщенные углеродом частицы марганца плавятся при температуре 1300-1350 °С и, растворяя железо, опускаются на подину печи. Из SiO2 руды восстанавливается немного кремния, восстанавливается также около 90% содержащегося в рудных материалах фосфора. Кремний и значительная часть марганца восстанавливаются из шлака.