108833 (689170), страница 2

Файл №689170 108833 (Введение в физику скачков) 2 страница108833 (689170) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

(8)

где r — удельный вес песка; Li (i = ) — соответствующие размеры рабочей камеры прибора при Г = 0; g — ускорение свободного падения.

Нетрудно заметить, что одновременно с поворотом боковых стенок начинается возмущение основного состояния образца. Возникающее в образце возмущение (перестройка его структуры) приводит в конечном счете к разрушению его основного состояния.

Очевидно, что для первой фазы эволюции энергия возмущения основного состояния образца W1 не должна превышать энергию, характерную для этого состояния:

W1 Wо1. (9)

Для случая, когда элементы cреды относительно неподвижны, в среде происходит накопление упругой энергии за счет сжатия с помощью одной из стенок прибора:

, (10)

где V — первоначальный объем песка при Г = 0; D V — величина, на которую уменьшается объем V при Г ¹ 0; c — коэффициент, характеризующий механические свойства песка, например предел упругости. Упругая энергия W* рассматривается нами в качестве непосредственного источника возникающего в образце в общем случае возмущения. В соответствии с законом сохранения энергии мы может записать

W* = W1. (11)

С учетом (4) получаем в окончательном виде

W* Wо1, W*/Wо1 1, (12)

где W* , Wo1 определены в (8), (10).

Граничный угол Г* следует из равенства правой и левой частей соотношения (12):

(13)

Рассматривая случай, приведенный в [2]: L1 = L2 = L3 = 150 мм — и принимая величины: c = 2 ´ 104 кГ/м2 [4], r = 1,7 ´ 103 кГ/м3 , — можно найти угол » 9о, близкий по величине к определенному в [2] экспериментально = 12о.

На рис. 2 приведены результаты эксперимента для двух видов предварительного уплотнения мокрого песка. Начальные точки теоретических кривых были взяты из эксперимента для определения отношения r /c . Нетрудно отметить согласие между экспериментом и теорией.

Таким образом, мы можем сделать следующий вывод об устойчивости песчаной среды. Устойчивость песчаной среды в рассматриваемом образце к сдвигу в диапазоне 0 < Г < Г* означает способность образца сохранять в этом диапазоне состояние единства и целостности образующей его среды — основное состояние образца на первой фазе его эволюции.

Рис. 2.

Эта способность сохраняется при условии (12), что характеризующая возмущение образца упругая энергия W* не превышает гравитационной энергий Wо1, характеризующей его основное состояние. Нарушение энергетического порогового соотношения (12) приводит к смене основного состояния образца и, как следствие, к качественно новому поведению песчаной среды.

Весьма актуальной представляется попытка [3] распространить проведенное исследование на объяснение природы землетрясений, в частности, наиболее опасных, очаг которых находится в пределах земной коры. Соответствующие линейные размеры Li (i = ) могли бы характеризовать в этом случае земной блок в иерархии дискретных масштабов [4]. С благодарностью вспоминаю академика М. А. Садовского, обратившего мое внимание на эту задачу в связи с проблемой землетрясения и нашедшего в себе силы обсуждать ее решение перед своим уходом из этой жизни.

2.3. Превращения в потоке частиц: турбулентность.

Известно, что поток частиц может принимать качественно различающиеся состояния, начиная от малоподвижного (потенциального) и кончая потоком с крупномасштабной турбулентностью (хаотичностью движения частиц). Эти превращения характеризуются так называемыми критическими числами Рейнольдса:

Rej = u jr r/h = nj , j = 1,2,3,... ,

где u j, r , r, h — скорость, плотность, линейный размер и динамическая вязкость (динамическое трение) соответственно; nj — некоторое число. Числа Rеj (как и числа Фруда) — известные коэффициенты подобия — входят в состав соответствующих математических моделей в качестве безразмерных параметров управления [4]. Природа этих чисел и, следовательно, природа превращений в потоке частиц была неизвестна до настоящего времени. Покажем, что превращения в потоке частиц есть конкретное проявление закона сохранения и превращения энергии определенного вида. Для этого выделим первые критические числа j = , отыскивая соответствующие энергетические пороговые соотношения (3). Мы будем использовать известные законы динамического трения в строгом соответствии с определенными участками шкалы возрастающих чисел Re.

Переход от потенциального потока к сплошному Re1. Потенциальный поток, или “сухая вода” [5], — среда относительно неподвижных и независимых частиц, точнее частиц, совершающих колебания относительно некоторых центральных положений. В качестве основного состояния частицы рассматриваем состояние ее единства с локальной областью среды. Энергию Wо1 , характерную для такого состояния, определяем с использованием закона Стокса

F = 6p h ru

как абсолютную величину работы, затраченной на образование частицы в локальной области среды:

.

Собственную энергию возмущения частицы записываем как ее кинетическую энергию, определяя скорость u для ее свободного состояния:

.

В результате мы можем записать соотношение между энергиями W* и Wo1 в виде

Re = u r r/h 4,5 , u 1 = 4,5 h /(r r) , Re1 = 4,5.

Здесь параметры m, r , r, h , u относятся к частице, в частности r — ее радиус. В случае Re > Re1 частица теряет “жесткую” связь со средой; ее кинетическая энергия позволяет преодолеть предел текучести, характеризуемый энергией Wo1; поток переходит из состояния потенциального в состояние сплошного, напоминающего мед [5]. На этой фазе начинается подготовка к расслоению потока, а сама фаза есть катастрофа предыдущей.

Переход от сплошного потока к ламинарному Re2 . В качестве объекта рассматриваем некоторый слой потока с площадью соприкосновения A и линейным поперечным размером r. Основное состояние слоя — состояние его единства со сплошным потоком. Энергию такого состояния определяем как абсолютную величину работы, затраченной на образование слоя в поле квазиупругой силы [5]:

F = Ah u /r

и принимаем равной:

Началом отсчета для возникающего возмущения на этой фазе является скорость u 1 из-за катастрофы предыдущей связи. Поэтому собственная энергия возмущения слоя записывается в виде

Предельную скорость u 2 отыскиваем из равенства W*(u — u 1) = = Wo2 . В результате получаем:

u 2 = 7,18 h /r r ,Re2 = 7,18.

В момент, определяемый Re = Re2 , одновременно существуют целостный поток и независимый слой как часть этого потока. Для Re > Re2 начинается расслоение потока в виде скачкообразного выделения слоев с различающейся скоростью; возникает ротор скорости, определяющий в дальнейшем появление мелкомасштабных вихрей. Возникшая фаза есть катастрофа предыдущей.

Переход от ламинарного потока к потоку со стационарными завихрениями Re3. В качестве объекта рассматриваем трубку тока. На основании закона Хагена — Пуайзеля [6] энергию основного состояния мы можем записать в виде

Wo3 = 4p rlu ,

где r, l — радиус трубки тока и ее длина соответственно. Началом отсчета для возникающего возмущения ввиду новой связи является скорость u 2. Собственную энергию возмущения записываем в виде

W*(u – u 2) = p r2lr (u – u 2)2.

Значения Re3 и u 3 находим из равенства W* (u – u 2) = W03:

u 3 = 19,8 h /r r, Re3 = 19,8.

При нарушении энергетического порогового соотношения Re > Re3 перепад давления в трубке исчезает за счет ее закручивания. Возникают стационарные вихри с фиксированными центрами вращения. В свою очередь, на этой фазе происходит катастрофа — смена геометрического образа потока. Начинается подготовка к отрыву образовавшихся вихрей от локальных центров вращения.

Образование вихревой цепочки Кармана Re4 . Энергия основного состояния потока, формирующая цилиндрическое вихревое образование, записывается на основании известного закона для момента сил [5]:

,

— и равна:

Wo4 = 4p 2h lru .

Собственная кинетическая энергия вращающегося цилиндра равна:

где r, l — радиус и длина цилиндра соответственно. Из предельного равенства W* = Wo4 находим

u 4 = 43,06 h /r r , Re4 = 43,06.

В момент Re = Re4 вихрь есть одновременно часть локальной области и движущегося потока. При переходе Re > Re4 вихри отрываются от центров вращения и становятся частью потока.

Найденные числа Rej, j = , являются конкретным выражением исследуемого нами закона и находятся в согласии с соответствующими участками диапазона Re, указанными в [5].

2.4. “Слепые пятна” ФАР.

Фазируемые антенные решетки (ФАР) являются антеннами, принимающими и излучающими электромагнитные волны сверхвысоких частот (СВЧ), и представляют собой определенное множество элементарных излучателей (элементов), объединенных в одно целое с помощью системы СВЧ питания таким образом, что формируемый ФАР электромагнитный луч может перемещаться в свободном пространстве за доли секунды, обслуживая практически полусферу.

Отмечен [5] эффект исчезновения луча под определенными угловыми направлениями для некоторых конструкций ФАР. Эффект получил название “слепые пятна” ФАР и весьма нежелателен для радиолокации, где применяются сами ФАР.

В антенне возникает явление резонанса, когда СВЧ электромагнитная энергия отражается от апертуры к генератору волн. Для возникающей аномалии характерно, что в диаграмме направленности элемента в составе решетки возникают нулевые провалы под соответствующими “слепым пятнам” углами. В то же время для одиночного излучателя таких провалов нет. Природа эффекта считалась неизвестной.

Соответствующее энергетическое пороговое соотношение было получено нами ранее [8]:

где l — длина волны в свободном пространстве; j — азимут; q — угол, отсчитываемый от нормали к апертуре ФАР. Здесь параметр gи представляет собой относительную мощность, излучаемую синфазно и равномерно возбужденной площадкой S, приходящейся на один элемент в апертуре решетки, под углами q , j . Параметр gи характеризует основное состояние элемента.

Параметр g0 представляет собой относительную мощность, излучаемую одиночным элементом в токопроводящем экране под q , j , и характеризует собственную энергию возмущения элемента в составе решетки. Соотношение было апробировано с помощью результатов физического и вычислительного экспериментов, приведенных в известной литературе или полученных автором.

Характеристики

Тип файла
Документ
Размер
1,18 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6376
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее