13964 (685970), страница 2
Текст из файла (страница 2)
Среди источников возможного техногенного загрязнения почв сельскохозяйственных угодий и растений в научной и особенно популярной литературе называются минеральные и известковые удобрения. Конкретных экспериментальных и производственных данных о фактическом действии удобрений на загрязнение почвенной среды и растительной продукции совершенно недостаточно. Отсутствуют также систематизированные данные о химическом составе минеральных и известковых удобрений.
Следует отметить, что сурьма, может образовывать летучие соединения, и таким образом возможен воздушный перенос её на большие расстояния от промышленных районов.
1.4 Факторы, оказывающие влияние на поступление химического
элемента из почвы в растение
В настоящее время мало известно о механизмах накопления растениями тяжелых металлов, потому что до сих пор основное внимание уделялось усвоению соединений азота, фосфора и других элементов питания из почвы.
Кроме того, сравнение полевых и модельных исследований показало, что загрязнение почвы и окружающей среды (смачивание листовых пластинок солями тяжелых металлов) в полевых условиях оказывает менее значительное изменение в росте и развитии растений, чем в лабораторных модельных опытах. В некоторых опытах высокое содержание металлов в почве стимулировало рост и развитие растений. Это связано с тем, что более низкая влажность почвы в полевых условиях снижает мобильность металлов, и это не позволяет их токсическому эффекту проявиться в полной мере. С другой стороны, это может быть связано с уменьшением токсичности почвы, обусловленной деятельностью почвенных микроорганизмов в результате снижения их численности при загрязнении почвы металлами. Кроме того, это явление можно объяснить косвенным влиянием тяжелых металлов, например, через воздействие их на некоторые биохимические процессы в почве, в результате чего возможно улучшение питательного режима растений.
Таким образом, действие металлов на растительный организм зависит от природы элемента, содержания его в окружающей среде, характера почвы, формы химического соединения, срока от момента загрязнения. Формирование химического состава растительного организма определяется биохимическими особенностями различных видов организмов, их возрастом и биохимическими закономерностями связи между элементами в организме. Содержание одних и тех же химических элементов в различных частях растений может изменяться в широких пределах.
1.4.1 Почвенные факторы
Концентрация сурьмы в почве в среднем составляет 1 мг/кг. При выветривании в восстановительных условиях среды с переменным потенциалом показывает среднюю степень подвижности. Значение рH при котором сурьма наиболее подвижна в литературных источниках не указано.
Содержание гумуса в почвах напрямую связано с их способностью адсорбировать тяжелые металлы, поскольку последние хорошо поглощаются органическим веществом почвы. Тяжелые металлы способны образовывать сложные комплексные соединения с органическим веществом почвы, поэтому в почвах с высоким содержанием гумуса они менее доступны для поглощения растениями.
Гласкотером и др. был рассчитан индекс сродства микроэлементов к органическим соединениям в разнообразных образцах угля, согласно которому сурьма относится к элементам с малым сродством, но присутствующим во всех органических фракциях.
Катионообменная способность обусловлена содержанием и минералогическим составом илистой фракции, а также содержанием органического вещества. Чем выше емкость катионного обмена, тем больше удерживающая способность почв по отношению к тяжелым металлам, что снижает их доступность растениям и живым организмам.
Избыток влаги в почве способствует появлению тяжелых металлов в низкой степени окисления и в более растворимых формах. Анаэробные условия повышают доступность тяжелых металлов растениям.
Поведение сурьмы в зависимости от минералогического состава почвы изучено недостаточно, в литературных источниках, данных по этому вопросу не предоставлено.
1.4.2 Свойства растений
Главный путь поступления металлов в растения - это абсорбция корнями. Поэтому почвенная среда - основной источник элементов для растений, корневая система которых может поглощать тяжелые металлы активно (метаболически) и пассивно (неметаболически). В большинстве случаев скорость поглощения элементов положительно коррелирует с содержанием их доступных форм. На эту главную закономерность оказывают влияние ряд факторов:
- реакция среды,
- концентрация кальция, магния и других ионов,
- такие свойства почвенной среды как температура, аэрация, окислительно-восстановительный потенциал,
- вид растений и стадия его развития.
Поэтому зависимость между степенью загрязнения почвы тяжелыми металлами и интенсивностью их поступления в растения является сложной и не носит функционального характера. Объясняется это тем, что не все растения обладают одинаковой способностью накапливать тяжелые металлы. Это свойство связано с наличием у растений в разной степени выраженности различных физиолого-биохимических защитных механизмов, препятствующих поступлению токсичных элементов.
Несмотря на существенную изменчивость в способности различных растений к накоплению тяжелых металлов, биоаккумуляция элементов имеет определенную тенденцию.
В настоящее время накоплено, к сожалению недостаточно экспериментальных данных по содержанию тяжелых металлов в растениях.
Сурьма не считается жизненно необходимым металлом, но известно, что ее растворимые формы активно извлекаются растениями из почв. Так по данным Шаклетта и др., содержание сурьмы в тканях деревьев и кустарников, произрастающих в районах рудной минерализации, составляет 7-50 мг/кг сухой массы, при этом ее среднее содержание в наземных растениях оценивается в 0,06 мг/кг сухой массы. В съедобных растениях концентрация сурьмы колеблется в пределах 0,02-4,30 мкг/кг важной массы, причем более высокие уровни характерны для капусты, а самые низкие для яблок. По данным Лаула и др., содержание сурьмы в зерне кукурузы и клубнях картофеля не превышало 2 мкг/кг сухой массы, а в травах достигало 29 мкг/кг. Получены данные, согласно которым концентрация этого элемента в корневой системе ячменя и льна равны 122 и 167 мкг/кг сухой массы соответственно, что значительно выше содержаний в листьях, где они составляют 10 и 27 мкг/кг сухой массы.
По мере увеличения содержания тяжелых металлов в почве до очень высокого уровня концентрация их в различных органах увеличивается. Но при этом сохраняется соотношение между содержанием тяжелых металлов в корнях, стеблях, листьях и репродуктивных органах.
Видовые особенности культур определяют распределение металлов по органам. Корни растений до определенного предела обеспечивают защиту надземных органов. Если, несмотря на защитную функцию корней, токсикант проникает в стебель и листья, то растение способно ограничить его поступление в репродуктивные органы.
При прогнозировании поступления тяжелых металлов в растения следует принимать во внимание различие в содержании металлов в культурах, выращенных на разных типах почв.
В корневой системе некоторых растений, произрастающих на торфяных почвах, содержание сурьмы в несколько раз ниже, тогда как в листьях они были близки к приведенным выше.
Данные о фитотоксичности сурьмы отсутствуют; тем не менее, в растениях на почвах, загрязненных промышленными выбросами или в результате применения осадка сточных вод, содержания сурьмы могут быть высокими. Коэффициенты накопления не представлены.
-
Нормирование содержания сурьмы в почве, продукции
растениеводства и связанных с ней продуктах питания
Нормирование содержания тяжелых металлов в почве и растениях является чрезвычайно сложным из-за невозможности полного учета всех факторов природной среды. Так, изменение только агрохимических свойств почвы (реакции среды, содержания гумуса, степени насыщенности основаниями, гранулометрического состава) может в несколько раз уменьшить или увеличить содержание тяжелых металлов в растениях. Имеются противоречивые данные даже о фоновом содержании некоторых металлов. Приводимые исследователями результаты различаются иногда в 5-10 раз.
Валовое содержание является фактором емкости, отражающим в первую очередь потенциальную опасность загрязнения растительной продукции, инфильтрационных и поверхностных вод. Характеризует общую загрязненность почвы, но не отражает степени доступности элементов для растения. Для сурьмы ПДК в валовой форме составляет с учетом фона 4,5 мг/кг почвы.
Подвижные формы определяют, используя различные экстрагенты. Общее количество подвижной формы металла - применяя кислотную вытяжку (например, 1н HCL). В ацетатно-аммонийный буфер переходит наиболее мобильная часть подвижных запасов тяжелых металлов в почве. Концентрация металлов в водной вытяжке показывает степень подвижности элементов в почве, являясь самой опасной и "агрессивной" фракцией. Предельно допустимое содержание подвижной формы сурьмы в почве равно 15 мг/кг, экстрагент 1н. HCl (Х. Чулджиян и др., 1988).
Класс опасности сурьмы - II.
Предельно допустимые концентрации в продуктах питания (мг/кг) (институт питания РАН, 1986 г.): зерно, крупа, мука, крахмал – 0,1, овощи, фрукты, ягоды – 0,3.
-
Биохимическая роль сурьмы в организме животных и
человека. Фоновые и пороговые концентрации сурьмы в
организме человека
Биохимическая роль сурьмы для организма человека и животных до настоящего времени не установлена. Отдельные исследования показывают, что сурьма содержится не только в целостной клетке, но и входит в состав всех клеточных образований: цитоплазмы, ядра, митохондрий, микросом в количестве, соответственно 0,8 мкг, 1,3 мкг, 0,1 и 0,2 мкг. Из приведенных данных можно предположить, что сурьма является постоянным компонентом живых организмов, однако играет ли она какую- либо биологическую роль пока неизвестно.
Содержание сурьмы (на 100 г сухого вещества) составляет в морских животных 0,02 мг, в наземных животных 0,0006 мг. В организм животных и человека поступает через органы дыхания или желудочно-кишечный тракт. Выделяется главным образом с фекалиями, в незначительном количестве - с мочой. Она избирательно концентрируется в щитовидной железе, печени, селезёнке. В эритроцитах накапливается преимущественно в степени окисления +3, в плазме крови - в степени окисления +5. Предельно допустимая концентрация сурьмы 10-5 – 10-7 г на 100 г сухой ткани. При более высокой концентрации этот элемент инактивирует ряд ферментов липидного, углеводного и белкового обмена (возможно в результате блокирования сульфгидрильных групп).
В медицинской практике препараты сурьмы (солюсурьмин и др.) используют в основном для лечения лейшманиоза и некоторых гельминтозов.
Сурьма и её соединения ядовиты. Отравления возможны при выплавке концентрата сурьмяных руд и в производстве сплавов. При острых отравлениях - раздражение слизистых оболочек верхних дыхательных путей, глаз, а также кожи. Могут развиться дерматит, конъюнктивит. Лечение: антидоты, мочегонные и потогонные средства. Профилактика - механизация производственных процессов, эффективная вентиляция.
2. Токсичность сурьмы для организма человека при применении
комплекса удобрений и мелиорантов в агроценозе
2.1 Изменение концентрации сурьмы в почве после
единовременного применения средств химизации
Для определения изменения концентрации сурьмы в почве, приводится пример использования под картофель комплекса удобрений. Комплекс удобрений представлен аммиачной селитрой, сульфатом калия и простым суперфосфатом, который содержит в своем составе сурьму в количестве 20,0 мг/кг сухой массы. Почва в опыте дерново-подзолистая, её агрохимическая характеристика представлена далее.
Таблица 2. Агрохимическая характеристика дерново-подзолистой
почвы (пахотный горизонт)
Глубина пах.слоя (см) | Плотность почвы г/см | Гумус % | pH kcl | Hг | S | Подвижные соединения макроэлементов мг/100 г почвы | Концентрация экотоксиканта (Со), мг/кг почвы | ||
мг-экв/100г | Р2О5 | К2О | Валовая форма | Подвижная форма (вытяжка ААБ или 1н HNO3) | |||||
20 | 1,25 | 2 | 4,5 | 5 | 4 | 5 | 10 | 3 | - |
Представленную почву можно отнести к слабоокультуренной. Для неё характерно низкое содержание гумуса, общего азота и фосфора. По степени обменной кислотности она относится к сильнокислым почвам. В составе поглощенных катионов преобладают ионы H+ и Al3+. Гранулометрический состав – легкий суглинок. На данной почве необходимо применение комплекса минеральных удобрений, а также проведение известкования.
Используемая в опыте культура – картофель.