1516 (684645), страница 5

Файл №684645 1516 (Оптимізація балансу АКБ "Правекс-Банк" з метою покрашення його фінансових показників) 5 страница1516 (684645) страница 52016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

xn+1 = xn  [f (x[n/kk)]1f (xn), (2.18)

Можна довести, що якщо функція f сильно випукла і f задовольняє умові Липшиця, то

||xn+kx*||  C||xnx*||k+1,

тобто за k кроків порядок погрішності зменшується в k+1 разів, що відповідає наступній оцінці погрішності на кожному кроці:

||xn+1x*||  C||xnx*||kk+1.

Іншими словами, метод (2.18) є методом kk+1-го порядку збіжності. Таким чином, метод (2.18) займає проміжне положення між методом Ньютона (k=1) і модифікованим методом Ньютона (2.17) (k=) як по швидкості збіжності, так і за об'ємом обчислень.

Інший спосіб зменшення об'єму роботи, пов'язаного з обчисленням функції f (xn) можна описати так. Метод січних рішення рівняння (2.11) полягає в наближеній заміні функції F в рівнянні не дотичної y=F(xn)+F (xn)(x-xn), а січною гіперплощиною. Наприклад, в одновимірному випадку - прямою y=F(xn)+(F(xn)F(xn1))(x-xn)/(xnxn1) (див. рис.2.3). Ця заміна призводить (в скалярному випадку!) до наступного методу рішення задачі (2.10):

(2.19)

який і називається методом січних. Відомо, що для достатньо гладких випуклих функцій порядок сходимісті цього методу рівний , де =(+1)/21.618 - відома константа (звана золотим перетином).

Рисунок 2.3. - Геометрична інтерпретація одновимірного випадку метода січних рішень

В багатовимірному випадку поступають таким чином. Хай xn, xn1, ..., xnm - вже обчислені m + 1 ітерації. Для кожної компоненти fj функції f (j=1..., m) побудуємо в Rm+1 гіперплощину Sj, що проходить через m+1 точку (xi, fj(xi)) (i = nm,..., n) графіка цієї компоненти. Хай P — „горизонтальна гіперплощина, яка проходить через нуль” в Rm+1: P = {(x, y) Rm×R; y = 0}. Як xn+1 візьмемо точку перетину гіперплощин P і Sj:

(в загальному положенні ця точка єдина).

Нескладні міркування показують, що xn+1 можна обчислювати так. Хай 0,...,n - рішення системи

(2.20)

Тоді

Потім описані дії повторюються для точок xn+1, xn, ..., xnm+1.

Відзначимо, що оскільки на кожному кроці в системі (2.20) змінюється лише один стовпець, то її рішення на кожному кроці можна обновляти за допомогою спеціальної процедури, що не вимагає великого об'єму обчислень.

Відзначимо, що метод сікучих, на відміну від методів, що раніше розглядалися, не є одно кроковим в тому значенні, що для обчислення наступної ітерації йому не достатньо інформації, отриманої на попередньому кроці потрібна інформація, отримана на m + 1 попередніх кроках. Такі методи називаються багатокроковими. Методи ж Ньютона і градієнтний є одно кроковими: для обчислення xn+1 вимагається знати поведінку функції і її похідних тільки в точці xn.

Були так досконало розглянули усі можливі ситуації при використанні метода Ньютона, бо саме на нього і буде опиратися наша оптимізація пошуку найдешевшого переказу через Microsoft Excel „Пошук рішення”. Та найдешевша траса не завжди є оптимальною, бо крім вартості необхідно враховувати багато нечітких, проте, з економічної точки зору, більш вагомих чинників, як то досвід, забаганка клієнта та інше в залежності від пріоритетів банку. Тому щоб перейти до суто математичної оптимізації, на початку необхідно пройти етап непараметричної статистика, яка робить можливим вищезазначені процеси.

Для того, щоб вивчати ці процеси, а потім ефективно керувати ними, необхідно знати ступінь впливу кожного фактора на процес та взаємний зв’язок факторів між собою.

Основні знання про об’єкти керування та їх особливості найкраще відображаються на математичних моделях, в побудуванні яких приймають участь методи математичної статистики. Ці методи, що базуються на класичній теорії ймовірності, використовуються для обробки кількісних оцінок факторів, і вимагають прийняття ряду припущень, зо не завжди відповідають природі об’єктів або явищ, що досліджуються.

Переваги непараметричних методів :

1. Методи потребують небагато припущень відносно властивостей генеральних сукупностей. Зокрема, вони не потребують традиційного припущення щодо нормального розподілення.

2. Непараметричні методи часто простіші до застосування, ніж їх традиційні прототипи.

3. Як правило, ці методи добре розуміються та легко інтерпретуються користувачами.

4. Непараметричні методи видаються корисними також в тих випадках, коли досліджуванні змінні не є кількісними, тобто не відображаються в кількісних шкалах, а відображаються тільки в шкалі переваг.

5. Непараметричні методи за відсутністю порушень припущень лише трохи менш ефективні, ніж їх традиційні прототипи, що розроблені для нормального розподілення. Зате за порушенням нормальності вони не мають конкурентів.

Непараметрична статистика являє собою порівняно молодий напрямок математики. Її вік не перевищує 60-ти років.

Непараметрична статистика має великі можливості щодо застосування до економічних та соціальних досліджень. По-перше, можна упевнено припустити, що більшість економічних та соціальних показників оцінюються за статистичними даними, що не підкоряються нормальному розподіленню. По-друге, серед факторів, що впливають на хід економічних та соціальних процесів, багато таких, що не можуть бути виміряними кількісно. Їх можна оцінити лише зробивши ранжирування за убуванням або зростанням якоїсь якості, тобто представити у вигляді рангів.

2.2 Застосування теорії Марковіца для формування банківських активів з точки зору оптимізації прибутку

В наш час банківський ринок пропонує все більше і більше різноманітних видів кредитних пакетів. Завдяки засобам телекомунікацій, видача кредитів стала міжнародним явищем. Кожен тип кредиту має свою доходність, яка з часом коливається, тому вибір тих типів кредитів, які варто включити у власні активи, складає певну проблему.

Ця проблема вирішується за допомогою найбільш відомої моделі портфелю цінних паперів Марковіца, для якої може бути знайдено оптимальне рішення за допомогою методів лінійного програмування для:

  • Максимуму доходів при заданому значенні ризику

, (2.21)

  • Мінімуму ризику при заданому значенні доходності

, (2.22)

де xi – частка капіталу i-го виду, di- середня прибутковість i-го виду у відсотках в розрахунку на одну грошову одиницю, mp – задана середня прибутковість, vij – ковариація доходностей i – го та j – го видів, vр– ковариація, якою вимірюється ризик, rp – задана середня коваріація.

Ця модель широко застосовується зараз і для розрахунку ефективності інвестиційних проектів. Але це використання провадиться без критичного аналізу можливої межі застосування моделі виду (2.21)-(2.22).

В зв’язку з вищесказаним, виникають наступні задачі:

  • виявлення можливості використання матриці коефіцієнтів кореляції , (де – середнє квадратичне відхилення доходності) замість матриці коваріації. Коефіцієнт кореляції є безрозмірним і завжди коливається в межах [±1], що робить його значно зручнішим для аналізу ситуації та визначення допустимого рівня ризику, аніж коваріація. Особливо це стосується моделі (2.2.1), де потрібно задавати певний, наперед визначений рівень ризику;

  • проведення аналізу по типу матриці коваріації – для якого типу це рішення можливе чи існує?

  • і останнє, чи не можна спростити моделі (2.21)-(2.22) і звести їх у єдину модель виду

, (2.23)

щоб не задумуватися над проблемою визначення допустимого рівня ризику для кожного портфелю. В (2.23) якості цільової функції вибрано відношення, в якому середній ризик поділено на середню доходність портфелю. Очевидно, що така цільова функція має прагнути мінімуму. Назвемо таку модель “ризиково-доходною”

Рішення поставлених задач виконувалося із застосуванням функцій СЛУЧМЕЖДУ, “Ковариация”, “Корелляция” та “Поиск решения” електронних таблиць Excel.

На підставі експериментів можна зробити наступні висновки щодо оптимальної моделі портфелю цінних паперів Марковіца:

  • Використання матриці кореляцій дає тотожні результати з використанням матриці коваріацій.

  • Найбільш ефективним є портфель, який складається зі слабокорельованих кредитів

  • “Ризиково-доходна”.модель виду може бути застосована для випадку, коли складно визначитися з допустимими рівнями ризику чи доходності за моделями виду

  • Результати оптимальних розрахунків за моделлю варто приймати для випадків, коли модифікований ризик не перевищує 1.


2.3 Поняття оптимального балансу. Критерій оптимальності. Побудова оптимального балансу на підставі фінансових коефіцієнтів

Нехай існують деякі статті балансу підприємства, куди входять і статті звіту про збитки та прибутки по ф.2, СБі (1≤ іN, де N – кількість таких статей балансу), які пов’язані одна з одною кореспондентськими відносинами вигляду

СБі = Fl(СБj) ( 1≤ і, jN, ij, 1≤ lK ), (2.24)

де K – кількість кореспондентських зв’язків для даного балансу, Fl – функція кореспондентських (для балансу) або розрахункових зв’язків (для ф.2). Нехай також, існує множина фінансових коефіцієнтів, які виводяться зі статей балансу шляхом утворення з них певних комплексів вигляду

, (2.25)

де 1≤ іМ, М – кількість фінансових коефіцієнтів, Zi – кількість статей балансу, які входять до i – го коефіцієнту, Sj – дорівнює “1” або “–1”. На підставі досліджень відомо, що для кожного з цих коефіцієнтів існує певна межа їх значень, більше або менше якої баланс стає неефективним, тобто

,(2.26)

де ОБі – значення цих обмежень для і-го коефіцієнта. Y=0, якщо обмеження вимагають, щоб коефіцієнт був менший за них: Y=1, якщо більший.

Нехай в процесі диверсифікації капталу були запропоновані декілька інвестиційних проектів, реалізація яких має призвести до зміни окремих статей балансу у вигляді

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7010
Авторов
на СтудИзбе
261
Средний доход
с одного платного файла
Обучение Подробнее
{user_main_secret_data}