92533 (680750)

Файл №680750 92533 (Общие требования предъявляемые к стимуляторам мышц человека в многоканальная электростимуляция опорно-двигательного аппарата)92533 (680750)2016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра ЭТТ

РЕФЕРАТ

На тему:

«Общие требования предъявляемые к стимуляторам мышц человека в многоканальная электростимуляция опорно-двигательного аппарата»

МИНСК, 2008

В случае биоуправляемой стимуляции опыт использования электрических сигналов для управления движением показывает, что выбор вида и параметров стимуляции должен базироваться на ряде показателей, которые могут быть объединены в три группы: 1) физиологические, характеризующие субъективное восприятие сигналов и влияние их на процессы в организме; 2) функциональные, характеризующие качество выполнения движения (сила сокращения, точность и объем движения); 3) технические (минимальное потребление энергии, возможность регулирования управляющего сигнала и т. д.). Сравнение различных видов стимулирующих сигналов с точки зрения их использования в системах управления движениями возможно только на основании предварительного выбора оптимальных параметров внутри одного вида по трем перечисленным выше показателям. С этой целью проанализированы различные параметры синусоидального стимулирующего сигнала и прямоугольных импульсов (одно- и двухполярные) и охарактеризованы их достоинства и недостатки при биоэлектрическом управлении движениями человека. В ходе исследования амплитудных и частотных характеристик некоторых электрических и механических параметров активности нервно-мышечных групп предплечья была изучена эффективность синусоидальных стимулирующих сигналов в диапазоне частот 100 Гц — 10 кГц (рис. 1).

Рисунок 1 – Блок-схема снятия амплитудных и частотных характеристик сокращений мышц предплечья.

Результаты исследований показали, что независимо от частоты стимула амплитудные характеристики мышечного напряжения (момент) в большим диапазоне усилий сохраняют приблизительно линейный характер (рис. 2). В околопороговой области наблюдается значительная нелинейность. Такая зависимость соответствует общеизвестным физиологическим данным, полученным на изолированных мышцах.

Рисунок 2 – Зависимость силы сокращения мышц предплечья от интенсивности стимуляции при частоте:1 — 500 Гц; 2 — 200 Гц: 3 — 5000 Гц

Характерную область «насыщения» при сверхмаксимальных раздражениях, когда дальнейшее увеличение интенсивности раздражения не приводит к увеличению ответной реакции, у большинства испытуемых получить не удалось из-за возникновения сильных болевых ощущений. Лишь у некоторых испытуемых в области 2—5 кГц можно было достигнуть насыщения, которое наступало при увеличении силы раздражения более чем в три раза относительно пороговой.

Аналогичные соотношения между стимулом и реакцией наблюдались при прямой внутримышечной стимуляции, когда при увеличении амплитуды раздражающего импульса разряд ЭМГ увеличивался и достигал максимума при величине стимула, превышающей пороговую втрое. Дальнейшее увеличение амплитуды стимула приводило к уменьшению амплитуды разряда .

Отношение силы раздражения, вызывающего болевую реакцию, к пороговой (у) на данной частоте (пределы комфортной зоны) характеризует диапазон интенсивностей, в котором можно изменить сигнал управления. Это отношение максимально в области 2—5 кГц к составляет 2,5—3. При увеличении и уменьшении частоты стимуляции пределы комфортной зоны сужаются. Чем больше у, тем точнее можно дозировать движение. Поэтому там, где требуется получить более высокую точность движения, предпочтение отдается области 2—5 кГц.

Межэлектродное сопротивление (сопротивление стимулируемых нервно-мышечных групп с учетом сопротивления прохождению стимулирующего сигнала через кожу и жировую прослойку) в диапазоне частот 500 Гц — 10 кГц не претерпевает существенных изменений в зависимости от интенсивности стимула (2 и 3 на рис. 3). Наоборот, в диапазоне 100—200 Гц с ростом амплитуды стимула межэлектродное сопротивление уменьшается. На низких частотах 100—500 Гц изменяется и характер сопротивления. С ростом стимула возрастает его активный компонент, на что указывает уменьшение угла сдвига фаз между током и напряжением стимуляции. В области 2—10 кГц наблюдается относительная независимость фазовых сдвигов от интенсивности стимула.

Рисунок 3 – Изменение межэлектродного сопротивления в зависимости от интенсивности стимуляции при частоте: 1 — 200 Гц; 2 — 500 Гц; 3 — 5000 Гц.

Исследование частотных характеристик мышц предплечья показало, что для различных испытуемых область частот, при которых пороговые напряжения минимальны, и при неизменной интенсивности стимула достигается наибольший момент в лучезапястном суставе, занимает диапазон 2—5 кГц (рис. 4 – 5).

Максимальное мышечное напряжение (момент) наблюдается при частотах, совпадающих с максимумом фазовых сдвигов (рис. 6). Указанная закономерность сохраняется в широком диапазоне интенсивностей стимула. Как правило, при длительной стимуляции оптимальная частота снижается, а максимум мышечного напряжения становится слабо выраженным. Поэтому наиболее простым способом определения оптимальной частоты стимула для данного индивидуума является измерение (разовых сдвигов. В ряде случаев фазовые сдвиги между током и напряжением стимуляции достигают максимальных значении в области 4—5 кГц и далее при увеличении частоты остаются постоянными. В таких случаях оптимальная частота, на которой мышечное напряжение максимально, совпадает с минимальной частотой, на которой указанные фазовые сдвиги достигают максимума.

Рисунок 4 – Частотные характеристики порога раздражения для различных испытуемых

Рисунок 5 – Частотные характеристики сокращения, в условиях постоянства интенсивности стимула:1 — сверхпороговой; 2 — максимальной.

Рисунок 6 – Зависимость фазовых сдвигов от частоты в условиях постоянства интенсивности стимуляции: 1 — сверхпороговой; 2 — максимальной

С точки зрения энергетических затрат при стимуляции можно указать на две оптимальные области: 200 Гц и 2—5 кГц, при этом область 200 Гц энергетически более выгодна. Данная область более приемлема для воспроизведения медленно меняющихся усилий при биоэлектроуправлении. Так, на низких частотах мышечное напряжение при неизменном уровне стимула уменьшается значительно медленнее (до половинного значения за 30 и более секунд), чем при стимуляции повышенными частотами (2 кГц и выше). В последнем случае мышечное напряжение спадает за 5 и менее секунд. Нарастание мышечного напряжения при стимуляции в области высоких частот наступает почти мгновенно с подачей сигнала. При построении биоэлектрических систем управления следует учитывать эти особенности. Оптимальная система биоэлектроуправления должна иметь перестраиваемую частоту стимула в соответствии со скоростью движения в данный момент времени. Частота стимула должна быть пропорциональна производной программного (или управляющего) сигнала, изменяясь в пределах от 200 Гц до 5—7 кГц при изменении производной от нуля (поддержание постоянного усилия или суставного угла) до некоторого максимального значения, определяемого максимальной скоростью движения.

Выбор вида управляющего сигнала находится в прямой зависимости от способа передачи анергии тканям — с помощью поверхностных или имплантируемых электродов. Несмотря на определенные трудности использования имплантируемых электродов, связанные главным образом с необходимостью хирургического вмешательства, опасностью инфекции, реакцией на инородное тело со стороны организма и т. д., в ряде случаев их использование может оказаться весьма полезным. Достаточно сказать, что поверхностные электроды могут быть применены лишь для 60% мышц конечностей человека.

Возможность фиксировать положение электродов, незначительная энергия, требуемая для возбуждения и сокращения мышечных групп, снижение субъективных ощущений при стимуляции — вот лишь неполный перечень преимуществ имплантируемых электродов перед поверхностными. При использовании имплантируемых электродов в системах управления мышечной активностью целесообразно в качестве стимулирующего применять биполярный сигнал, так как он в отличие от униполярного той же мощности не вызывает поляризации и повреждения ткани под электродами во время длительного непрерывного действия.

Учитывая опыт использования синусоидальных и прямоугольных униполярных импульсных стимулирующих сигналов в устройствах биоэлектрического управления, нами был разработан и испытан двухполярный импульсатор со следующими параметрами знакопеременных импульсов: длительность 0,05—1,0 мс; частота повторения 80—500 Гц.

Исследования проведены для управления активностью сгибателей кисти и пальцев на здоровых испытуемых. Методика исследования не отличалась от таковой при использовании синусоидального стимулирующего сигнала. Результаты показали, что оптимальная длительность знакопеременных импульсов составляет 0,1—0,3 мс. При увеличении и уменьшении длительности максимальное мышечное напряжение в пределах комфортной зоны падает, а мощность сигнала, соответствующая максимальному усилию, возрастает. Частоту повторения знакопеременных импульсов следует выбирать в пределах 80—200 Гц. Дальнейшее увеличение частоты повторения приводило к возрастанию болезненности ощущений. Сравнение двухполярного импульсного сигнала с синусоидальным выявило определенные преимущества первого по показателю средней потребляемой мощности (в 2—3 раза).

Результаты исследования больных с центральными параличами и парезами различной этиологии до лечения», в процессе (через 8, 10 сеансов) и после восстановительного курса лечения по методу ПМБЭУ показали, что амплитудные и частотные электрические я механические характеристики нервно-мышечных групп при патологии двигательной функции центрального происхождения в общем подчиняются тем же закономерностям, которые имеют место у здоровых людей.

Большом разброс самих величин электрических и механически параметров не позволил выявить их отличий в норме и при патологии двигательной функции центрального происхождения. Поэтому для управления мышечной активностью при патологии двигательной функции центрального происхождения, как и для управления мышечной активностью здоровых людей, по физиологическим и функциональным показателям наиболее приемлемыми частотами синусоидального стимулирующего сигнала является область 2— 5 кГц, а прямоугольных импульсов — 80—200 Гц при длительности 0,1—0,5 мс.

Индивидуально для каждого больного изменение электрических и механических характеристик пораженных нервно-мышечных групп в процессе лечения подчиняется определенным закономерностям, которые отражают процесс восстановления двигательной функции. Так, у большинства больных с центральными гемипарезами, у которых в результате восстановительного лечения имело место клинически наблюдаемое улучшение двигательной функции в лучезапястном суставе, при исследовании после окончания курса лечения наблюдалось снижение мощности стимула, вызывающего возбуждение и сокращение мышечных групп, и возрастание мышечного напряжения в пределах комфортной зоны. Все случаи наблюдавшихся изменений энергетических затрат на возбуждение и сокращение могут быть разделены на две группы: апериодические изменения мощности стимула в процессе восстановительного лечения и колебательные изменения. Последняя особенность свидетельствует о том, что количество сеансов в курсе лечения нужно, по-видимому, определять индивидуально для каждого больного в зависимости от течения восстановительного процесса и реакции нервной системы на используемый метод лечения. Динамика изменения энергетических затрат, необходимых для возбуждения и сокращения нервно-мышечных групп при двигательных расстройствах, может служить дополнительным критерием при оценке эффективности восстановительного лечения.

Подводя итоги анализа эффективности различных видов и параметров стимулирующего сигнала при управлении движениями е помощью поверхностных электродов, можно сделать вывод, что, исходя из функциональных, физиологических и технических показателей, наиболее приемлемыми в качестве стимулов являются прямоугольные импульсные сигналы, униполярные и биполярные, длительностью 0,1—0,5 мс и частотой повторения 80—200 Гц, а также синусоидальные сигналы в диапазоне частот 2—5 кГц.

Характеристики

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее