91908 (680305), страница 3

Файл №680305 91908 (Лазеры в медицине) 3 страница91908 (680305) страница 32016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Характерными значениями мощности излучения гелий-неоновых лазеров следует считать десятки милливатт в областях 0,63 и 1,15 мкм и сотни в области 3,39 мкм. Срок службы лазеров ограничивается процессами в разряде и исчисляется годами. С течением времени в разряде происходит нарушение состава газа. Из-за сорбции атомов в стенках и электродах происходит процесс «жестчения», падает давление, меняется отношение парциальных давлений He и Ne.

Наибольшая кратковременная стабильность, простота и надежность конструкции гелий-неонового лазера достигаются при установке зеркал резонатора внутрь разрядной трубки. Однако при таком расположении зеркала сравнительно быстро выходят из строя за счет бомбардировки заряженными частицами плазмы разряда. Поэтому наибольшее распространение получила конструкция, в которой газоразрядная трубка помещается внутрь резонатора (рисунок 5), а ее торцы снабжаются окнами, расположенными под углом Брюстера к оптической оси, обеспечивая тем самым линейную поляризацию излучения. Такое расположение имеет целый ряд преимуществ – упрощается юстировка зеркал резонатора, увеличивается срок службы газоразрядной трубки и зеркал, облегчается их смена, появляется возможность управления резонатором и применения дисперсионного резонатора, выделения мод и т.п.

Рисунок 5 – Резонатор He-Ne лазера

Переключение между полосами генерации (рисунок 6) в перестраиваемом гелий-неоновом лазере обычно обеспечивается за счет введения призмы, а для тонкой перестройкой линии генерации обычно используется дифракционная решетка.

Рисунок 6 – Использование призмы Литроу

4.3 ИАГ-лазеры

Трехвалентный ион неодима легко активирует многие матрицы. Из них самыми перспективными оказались кристаллы иттрий-алюминиевого граната Y3Al5O12 (ИАГ) и стекла. Накачка переводит ионы Nd3+ из основного состояния 4I9/2 в несколько относительно узких полос, играющих роль верхнего уровня. Эти полосы образованы рядом перекрывающихся возбужденных состояний, их положения и ширины несколько меняются от матрицы к матрице. Из полос накачки быстрая передача энергии возбуждения на метастабильный уровень 4F3/2 (рисунок 7).

Рисунок 7 – Энергетические уровни трехвалентных редкоземельных ионов

Чем ближе к уровню 4F3/2 расположены полосы поглощения, тем выше КПД генерации. Достоинством кристаллов ИАГ является наличие интенсивной красной линии поглощения.

Технология роста кристаллов основана на методе Чохральского, когда ИАГ и присадка плавятся в иридиевом тигле при температуре около 2000 °С с последующим выделением части расплава из тигля с помощью затравки. Температура затравки несколько ниже температуры расплава, и при вытягивании расплав постепенно кристаллизуется на поверхности затравки. Кристаллографическая ориентировка закристаллизовавшегося расплава воспроизводит ориентировку затравки. Выращивание кристалла осуществляется в инертной среде (аргон или азот) при нормальном давлении с малой добавкой кислорода (1-2%). Как только кристалл достигает нужной длины его медленно остужают для предотвращения разрушения из-за термических напряжений. Процесс роста занимает от 4 до 6 недель и проходит под компьютерным управлением.

Неодимовые лазеры работают в широком диапазоне режимов генерации, от непрерывного до существенно импульсного с длительностью, достигающей фемтосекунд. Последняя достигается методом синхронизации мод в широкой линии усиления, характерной для лазерных стекол.

При создании неодимовых, как, впрочем, и рубиновых, лазеров реализованы все характерные методы управления параметрами лазерного излучения, разработанные квантовой электроникой. В дополнение к так называемой свободной генерации, продолжающейся в течение практически всего времени существования импульса накачки, широкое распространение получили режимы включаемой (модулированной) добротности и синхронизации (самосинхронизации) мод.

В режиме свободной генерации длительность импульсов излучения составляет 0,1…10 мс, энергия излучения в схемах усиления мощности составляет около 10 пс при использовании для модуляции добротности электрооптических устройств. Дальнейшее укорочение импульсов генерации достигается применением просветляющихся фильтров как для модуляции добротности (0,1…10 пс), так и для синхронизации мод (1…10 пс).

При воздействии интенсивного излучения Nd-ИАГ-лазера на биологическую ткань образуются достаточно глубокие некрозы (коагуляционный очаг). Эффект удаления ткани и тем самым режущее действие, незначительны по сравнению с действием CO2-лазера. Поэтому Nd-ИАГ-лазер применяется преимущественно для коагуляции кровотечения и для некротизирования патологически измененных областей ткани почти во всех областях хирургии. Поскольку к тому же передача излучения возможна через гибкие оптические кабели, то открываются перспективы применения Nd-ИАГ-лазера в полостях тела.

4.4 Полупроводниковые лазеры

Полупроводниковые лазеры испускают в УФ-, видимом или ИК-диапазонах (0,32…32 мкм) когерентное излучение; в качестве активной среды применяются полупроводниковые кристаллы.

В настоящее время известно свыше 40 пригодных для лазеров различных полупроводниковых материалов. Накачка активной среды может осуществляться электронными пучками или оптическим излучением (0,32…16 мкм), в p­n-переходе полупроводникового материала электрическим током от приложенного внешнего напряжения (инжекция носителей заряда, 0,57…32 мкм).

Инжекционные лазеры отличаются от всех других типов лазеров следующими характеристиками:

- высоким КПД по мощности (выше 10%);

- простотой возбуждения (непосредственное преобразование электрической энергии в когерентное излучение – как в непрерывном, так и в импульсном режимах работы);

- возможностью прямой модуляции электрическим током до 1010 Гц;

- крайне незначительными размерами (длина менее 0,5 мм; ширина не более 0,4 мм; высота не более 0,1 мм);

- низким напряжением накачки;

- механической надежностью;

- большим сроком службы (до 107 ч).

4.5 Эксимерные лазеры

Эксимерные лазеры, представляющие собой новый класс лазерных систем, открывают для квантовой электроники УФ диапазон. Принцип действия эксимерных лазеров удобно пояснить на примере лазера на ксеноне ( нм). Основное состояние молекулы Xe2 неустойчиво. Невозбужденный газ состоит в основном из атомов. Заселение верхнего лазерного состояния, т.е. создание возбужденной устойчивости молекулы происходит под действием пучка быстрых электронов в сложной последовательности столкновительных процессов. Среди этих процессов существенную роль играют ионизация и возбуждение ксенона электронами.

Большой интерес представляют эксимеры галоидов инертных газов (моногалогенидов благородных газов), главным образом потому, что в отличие от случая димеров благородных газов соответствующие лазеры работают не только при электронно-пучковом, но и при газоразрядном возбуждении. Механизм образования верхних термов лазерных переходов в этих эксимерах во многом неясен. Качественные соображения свидетельствуют о большей легкости их образования по сравнению со случаем димеров благородных газов. Существует глубокая аналогия между возбужденными молекулами, составленными из атомов щелочного материала и галогена. Атом инертного газа в возбужденном электронном состоянии похож на атом щелочного металла и галогена. Атом инертного газа в возбужденном электронном состоянии похож на атом щелочного металла, следующий за ним в таблице Менделеева. Этот атом легко ионизуется, так как энергия связи возбужденного электрона мала. В силу высокого сродства к электрону галогена этот электрон легко отрывается и при столкновении соответствующих атомов охотно перепрыгивает на новую орбиту, объединяющую атомы, осуществляя тем самым так называемую гарпунную реакцию.

Наиболее распространены следующие типы эксимерных лазеров: Ar2 (126,5 нм), Kr2 (145,4 нм), Xe2 (172,5 нм), ArF (192 нм), KrCl (222,0 нм), KrF (249,0 нм), XeCl (308,0 нм), XeF (352,0 нм).

4.6 Лазеры на красителях

Отличительной особенностью лазеров на красителях является возможность работы в широком длин волн от ближнего ИК до ближнего УФ, плавная перестройка длины волны генерации в диапазоне шириной в несколько десятков нанометров с монохроматичностью, достигающей 1­1,5 МГц. Лазеры на красителях работают в непрерывном, импульсном и импульсно-периодическом режимах. Энергия импульсов излучения достигает сотен джоулей, мощность непрерывной генерации – десятков ватт, частота повторения сотен герц, КПД десятков процентов (при лазерной накачке). В импульсном режиме длительность генерации определяется длительностью импульсов накачки. В режиме синхронизации мод достигается пикосекундный и субпикосекундный диапазоны длительностей.

Свойства лазеров на красителях определяются свойствами их рабочего вещества органических красителей. Красителями принято называть сложные органические соединения с разветвленной системой сложных химических связей, обладающие интенсивными полосами поглощения в видимой и ближней УФ областях спектра. Окрашенные органические соединения содержат насыщенные хромофорные группы типа NO2, N=N, =CO, ответственные за окраску. Наличие так называемых ауксохромных групп типа NH3, OH придает соединению красящие свойства.

4.7 Аргоновые лазеры

Аргоновый лазер относится к типу газоразрядных лазеров, генерирующих на переходах между уровнями ионов главным образом в сине-зеленой части видимой и ближней ультрафиолетовой областях спектра.

Обычно этот лазер излучает на длинах волн 0,488 мкм и 0,515 мкм, а также в ультрафиолете на длинах волн 0,3511 мкм и 0,3638 мкм.

Мощность может достигнуть 150 Вт (промышленные образцы 2 ÷ 10 Вт, срок службы в пределах 100 часов). Схема конструкции аргонового лазера с возбуждением от постоянного тока показан на рисунке 8.

Рисунок 8 – Схема конструкции аргонового лазера

1 – выходные окна лазера; 2 – катод; 3 – канал водяного охлаждения; 4 – газоразрядная трубка (капилляр); 5 – магниты; 6 – анод; 7 – обводная газовая трубка; 8 – глухое зеркало; 9 – полупрозрачное зеркало

Газовый разряд создается в тонкой газоразрядной трубке (4), диаметром 5 мм – в капилляре, которая охлаждается жидкостью. Рабочее давление газа в пределах десятки Па. Магниты (5) создают магнитное поле для «отжимания» разряда от стенок газоразрядной трубки, что не позволяет разряду касаться ее стенок. Эта мера позволяет повышать выходную мощность лазерного излучения за счёт снижения скорости релаксации возбужденных ионов, происходящую в результате соударения со стенками трубки.

Обводной канал (7) предназначен для выравнивания давления по длине газоразрядной трубки (4) и обеспечения свободной циркуляции газа. При отсутствии такого канала газ скапливается в анодной части трубки после включения дугового разряда, что может привести к его гашению. Механизм сказанного следующий. Под действием электрического поля, приложенного между катодом (2) и анодом (6) , электроны устремляются к аноду 6, повышая давление газа у анода. Это требует выравнивания давления газа в газоразрядной трубке для обеспечения нормального течения процесса, что осуществляется посредством обводной трубки (7).

Для ионизации нейтральных атомов аргона требуется через газ пропускать ток плотностью до нескольких тысяч ампер на квадратный сантиметр. Поэтому нужно эффективное охлаждение газоразрядной трубки.

Основные области применения аргоновых лазеров: фотохимия, термообработка, медицина. Аргоновый лазер, благодаря своей высокой избирательности по отношению автогенным хромофорам, применяется в офтальмологии и дерматологии.

5. Серийно выпускаемая лазерная аппаратура

Терапевты используют гелий-неоновые лазеры небольшой мощности, излучающие в видимой области электромагнитного спектра (λ=0,63 мкм). Одной из физиотерапевтических установок является лазерная установка УФЛ-1, предназначенная для лечения острых и хронических заболеваний челюстно-лицевой области; может использоваться для лечения длительно не заживающих язв и ран, а также в травматологии, гинекологии, хирургии (послеоперационный период). Используется биологическая активность красного луча гелий-неонового лазера (мощность излучения
20 мВт, интенсивность излучения на поверхности объекта 50-150 мВт/см2).

Есть сведения о том, что указанными лазерами лечат заболевания вен (трофические язвы). Курс лечения состоит из 20-25 десятиминутных сеансов облучения трофической язвы маломощным гелий-неоновым лазером и заканчивается, как правило, полным ее заживлением. Подобный эффект наблюдается и при лечении лазером не заживающих травматических и послеожоговых ран. Отдаленные последствия лазерной терапии при трофических язвах и долго не заживающих ранах проверялись на большом количестве излеченных больных в сроки от двух до семи лет. В течение этих сроков у 97% бывших больных язвы и раны больше не открывались и только у 3% наблюдались рецидивы заболевания.

Светоукалыванием лечат различные заболевания нервной и сосудистой системы, снимают боли при радикулите, регулируют кровяное давление и т.п. Лазер осваивает все новые и новые медицинские профессии. Лазер лечит мозг. Этому способствует активность видимого спектра излучения низкоинтенсивных гелий-неоновых лазеров. Лазерный луч, как оказалось, способен обезболивать, успокаивать и расслаблять мышцы, ускорять регенерацию тканей. Множество лекарств, обладающих аналогичными свойствами, назначают обычно больным, перенесшим черепно-мозговую травму, которая дает чрезвычайно запутанную симптоматику. Луч лазера сочетает в себе действие всех необходимых препаратов. В этом убедились специалисты из ЦНИИ рефлексотерапии Минздрава СССР и НИИ нейрохирургии им. К Н. Бурденко АМН СССР [5].

Исследования возможностей лечения лазерным лучом доброкачественных и злокачественных опухолей ведутся «Московским НИ онкологическим институтом им. П.А. Герцена», Ленинградским институтом онкологии им. Н.Н. Петрова и другими онкологическими центрами.

При этом используются лазеры разных типов: С02 лазер в непрерывном режиме излучения (λ = 10,6 мкм, мощность 100 Вт), гелий-неоновый лазер с непрерывном режимом излучения (λ = 0,63 мкм, мощность 30 мВт), гелий-кадмиевый лазер работающий в режиме непрерывного излучения (λ = 0,44 мкм, мощность 40 мВт), импульсный лазер на азоте (λ = 0,34 мкм, мощность импульса 1,5 кВт, средняя мощность излучения 10 мВт).

Разработаны и применяются три метода воздействия лазерного излучения на опухоли (доброкачественные и злокачественные):

а) Лазерное облучение- облучение опухоли расфокусированным лазерным лучом, приводящее к гибели раковых клеток, к потере способности размножаться.

Характеристики

Тип файла
Документ
Размер
48,22 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее