84416 (675871), страница 2

Файл №675871 84416 (Остроградский) 2 страница84416 (675871) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Все же вопрос об авторе интегральной формулы (1) оставался не вполне ясным. Дело в том, что, как было недавно замечено, в мемуаре Пуассона по теории упругости, выводится формула

где слева стоит интеграл по объему, а справа интеграл по граничной поверхности, причем суть направляющие косинусы внешней нормали.

Парижские рукописи Остроградского свидетельствуют, с полной несомненностью, что ему принадлежит и открытие, и первое сообщение интегральной теоремы (1). Впервые она была высказана и доказана, точно так, как это делают теперь в “Доказательстве одной теоремы интегрального исчисления”, представленном Парижской Академии наук 13 февраля 1826 г., после чего еще раз была сформулирована в той части “Мемуара о распространении тепла внутри твердых тел ”, которую Остроградский представил 6 августа 1827 г. “Мемуар” был дан на отзыв Фурье и Пуассону, причем последний его, безусловно читал, как свидетельствует запись на первых страницах обеих частей рукописи. Разумеется, Пуассону и не приходила мысль приписывать себе теорему, с которой он познакомился в сочинении Остроградского за два года до представления своей работы на теории упругости.

Что касается взаимоотношения работ по кратным интегралам Остроградского и Грина, напомним, что в “Заметке по теории теплоты” выведена формула, обнимающая собственную формулу Грина, как весьма частный случай. Непривычная теперь символика Коши, употребленная Остроградским в “Заметке”, до недавнего времени скрывала от исследователей это важное открытие. Разумеется, за Грином остается честь открытия и первой публикации в 1828 г. носящей его имя формулы для операторов Лапласа.

Открытие формулы преобразования тройного интеграла в двойной помогло Остроградскому решить проблему варьирования п-кратного интеграла, именно, вывести понадобившуюся там общую формулу преобразования интеграла от выражения типа дивергенции по п- мерной области и интеграл по ограничивающей ее сверхповерхности S с уравнением L(x,y,z,…)=0. Если придерживаться прежних обозначений, то формула имеет вид

(3)

Впрочем, Остроградский не применял геометрических образов и терминов, которыми пользуемся мы: геометрия многомерных пространств в то время еще не существовала.

В “Мемуаре об исчислении вариаций кратных интегралов” рассмотрены еще два важных вопроса теории таких интегралов. Во-первых, Остроградский выводит формулу замены переменных в многомерном интеграле; во-вторых, впервые дает полное и точное описание приема вычисления п- кратного интеграла с помощью п последовательных интеграций по каждой из переменных в соответствующих пределах. Наконец, из формул, содержащихся в этом мемуаре, легко выводится общее правило дифференцирования по параметру многомерного интеграла, когда от этого параметра зависит не только подынтегральная функция, но и граница области интегрирования. Названное правило вытекает из наличных в мемуаре формул настолько естественным образом, что позднейшие математики даже отождествляли его с одною из формул этого мемуара.

Замене переменных в кратных интегралах Остроградский посвятил специальную работу. Для двойного интеграла соответствующее правило вывел с помощью формальных преобразований Эйлер, для тройного – Лагранж. Однако, хотя результат Лагранжа верен, рассуждения его были не точными: он как бы исходил из того, что элементы объемов в старых и новых переменных – координатах – между собою равны. Аналогичную ошибку допустил вначале в только что упомянутом выводе правила замены переменных Остроградский. В статье “О преобразовании переменных в кратных интегралах” Остроградский раскрыл ошибку Лагранжа, а также впервые изложил тот наглядный геометрический метод преобразования переменных в двойном интеграле, который, в несколько более строгом оформлении, излагается и в наших руководствах. Именно, при замене переменных в интеграле по формулам , , область интегрирования разбивается координатными линиями двух систем u=const, v=const на бесконечно малые криволинейные четырехугольники. Тогда интеграл можно получить, складывая сначала те его элементы, которые отвечают бесконечно узкой криволинейной полосе, а затем, продолжая суммировать элементы полосами, пока они все не будут исчерпаны. Несложный подсчет дает для площади, которая с точностью до малых высшего порядка может рассматриваться как параллелограмм, выражение , где , выбирается так, чтобы площадь была положительной. В итоге получается известная формула

.

Так дифференциальное выражение , которое Эйлер формально подставлял вместо dydx, а следуя рассуждениям Лагранжа для трехмерного случая, нужно было бы считать равным dydx, приобрело у Остроградского простой и ясный геометрический смысл.

Дифференциальные уравнения.

В теории обыкновенных дифференциальных уравнений заслуживают внимания два результата Остроградского. В «Заметке о методе последовательных приближений», предложен метод решения нелинейных уравнений с помощью разложения в ряд по малому параметру, позволяющей избегать так называемых вековых членов, содержащих аргумент вне тригонометрических функций. Такие члены нередко появляются при употреблении обыкновенных приемов интегрирования с помощью степенных рядов; неограниченно возрастая вместе с аргументом, они порождают ошибочные приближения, а содержащее их решение оказывается неподходящим. С этим явлением встречались еще астрономы XVIII в. и задачей уничтожения вековых членов занимались Лаплас, Лагранж и другие. Свой метод, основанный на одновременном разложении по параметру как самого решения, так и периода входящих в него периодических функций, Остроградский кратко пояснил на примере:

, ,

который записал в несколько иной форме:

,

совпадающей с данным уравнением при . Решение с точностью до величин первого порядка относительно , найденное обычным способом, содержит вековой член:

;

решение по способу Остроградского от него свободно:

, .

Найденное приближение Остроградский сопоставил с точным решением уравнения в эллиптических функциях Якоби. Остроградский ограничился получением первого приближения; в конце статьи он высказал намерение приложить этот метод к движению планет вокруг Солнца. Намерение это, видимо, не осуществилось, но как раз в работах по определению орбит небесных тел идея Остроградского получила дальнейшее развитие. Одним из первых таких трудов явилось исследование по теории возмущений шведского ученого А. Линдстедта, работавшего в 1879 – 1886 гг. в Дерптском университете. За этим последовали глубокие исследования А. Пуанкаре и А. М. Ляпунова и, уже в советский период, Н. М. Крылова, который применил к нему и другим, более общим классам линейных неоднородных уравнений второго порядка, содержащих малый параметр, несколько модифицированный им метод Ляпунова. В настоящее время метод малого параметра широко применяется к исследованию нелинейных задач механики, физики и техники.

Небольшая “Заметка о линейных дифференциальных уравнениях” Остроградского (1839) содержит классическую теорему, которая излагается теперь в любом курсе дифференциальных уравнений. Дано уравнение

.

и п его решений , которые предполагаются линейно независимыми. Согласно теореме Остроградского определитель

выражается через коэффициент при (п-1)-й производной:

,

где а – постоянная. Мы называем определитель по имени впервые рассмотревшего его (в другой связи и более общей форме) польского математика Г. Вронского (1812). Та же теорема была одновременно получена из несколько иных соображений Ж. Лиувиллем (1838).

Некоторые работы Остроградского были связаны с конкретными задачами современной ему военной техники. Так, например, в 1839-1842 гг. он по поручению артиллерийского ведомства занимался изучением стрельбы эксцентрическими сферическими снарядами, у которых центр фигуры отличен от центра инерции. Этому вопросу Остроградский посвятил три небольшие статьи, из которых одна содержала таблицы интегралов, нужных для решения задачи о движении снаряда в воздухе при квадратичном законе сопротивления. К работам по баллистике в свою очередь примыкали исследования Остроградского по приближенным вычислениям, в том числе и упоминавшаяся работа 1839 г., содержащая вывод остаточного члена формулы суммирования Эйлера-Маклорена.

План:

  1. Жизненный путь М. В. Остроградского.

  2. Кратные интегралы.

  3. Дифференциальные уравнения.

  4. Заключение.

МОГИЛЕВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИМ. А. А. КУЛЕШОВА

Реферат

на тему:

М. В. Остроградский

Выполнила

студентка

физико-математического

факультета

V курса, группы “B”

Семерикова Юлия

МОГИЛЕВ

2002.

Характеристики

Тип файла
Документ
Размер
115,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее