IR-NER99 (675867), страница 6
Текст из файла (страница 6)
13. Подборка задач по теме «решение иррациональных неравенств».
14. Классические неравенства.
Рассмотрим некоторые наиболее важные для математического анализа неравенства. Эти неравенства служат аппаратом, который повседневно используют специалисты, работающие в этой области математики.
Теорема о среднем арифметическом и среднем геометрическом.
Теорема 1. Среднее арифметическое любых двух неотрицательных чисел а и b не меньше их среднего геометрического, т. е.:
Равенство имеет место в том и только том случае, когда a = b.
Доказательство. Поскольку квадратный корень может доставить немало хлопот, мы постараемся от него избавиться, положив a = c2, b = d2, что допустимо, ибо в теореме 1 предполагается, что числа а и b неотрицательны. При этом соотношение (1), в справедливости которого для произвольных неотрицательных чисел а и b мы хотим убедиться, примет следующий вид:
где с и d – произвольные действительные числа.
Неравенство (2) имеет место в том и только том случае, когда
что в силу основных правил, относящихся к неравенствам, равносильно тому, что
с2 + d2 – 2cd ≥ 0 (3)
Но с2 + d2 – 2cd = (с – d)2 , значит неравенство (3) равносильно
(с – d)2 ≥ 0 (4)
Так как квадрат любого действительного числа неотрицателен, то ясно, что соотношение (4) всегда имеет место. Значит справедливы и неравенства (3), (2), (1). Равенство в формуле (4), а значит и в формуле (1) достигается в том и только в том случае, когда c – d = 0, т.е. c = d, или, иначе говоря, когда a = b.
Покажем теперь, что теорему 1 можно вывести геометрическим путем простого сравнения некоторых площадей.
Рассмотрим график функции у = х, изображенный на рисунке.
Пусть S и Т точки прямой у = х с координатами (с, с) и (d, d). Рассмотрим также точки Р(с, 0), Q(0, d), R(c, d). Так как длина отрезка ОР равна с, то длина отрезка PS также равна с. Поэтому площадь ∆OPS, полупроизведение длин его основания и высоты равна .
Рассмотрим теперь прямоугольник OPRQ. Он полностью покрывается ∆OPS и ∆OQT, так что
SOPS + SOQT ≥ SOPRQ (5)
Так как площадь прямоугольника OPRQ – произведение длин его основания и высоты – равна сd, то при помощи алгебраических символов соотношение (5) можно записать так:
Кроме того, легко видеть, что равенство достигается только тогда, когда площадь ∆TRS равна нулю, что возможно только при условии совпадания точек S и Т, т. е. когда с = d.
Теорема 2. Среднее арифметическое любых трех неотрицательных чисел a, b и с не меньше их среднего геометрического, т.е.
Равенство достигается в том случае и только том случае, когда а = b = с.
Доказательство: пусть а = х3, b = у3, с = z3.
Подставим эти значения в неравенство (1):
что равносильно неравенству
x3 + y3 + z3 – 3xyz 0 (3)
Мы докажем теорему 2, если установим, что неравенство (3) имеет место для произвольных неотрицательных чисел x, y, z.
x3 + y2 + z2 – 3xyz = (x + y + z + )(x2 + y2 + z2 – xy – xz – yz) (4)
x + y + z – неотрицательное число, покажем, что
x2 + y2 + z2 – xy – xz – yz 0 (5)
Выпишем три неравенства x2 + y2 2xy, x2 + z2 2xz, y2 + z2 2yz (эти неравенства истинны по теореме 1) и сложим их почленно:
2(x2 + y2 + z2) 2(xy + xz + yz)
это неравенство равносильно неравенству (5). Равенство достигается тогда и только тогда, когда x = y = z.
Мы получили, что в (4) левая часть 0, т.е. неравенство (3) имеет место. Но неравенство (3) равносильно (1). Теорема доказана. Условие x = y = z равносильно условию a = b = c.
Теорема будет верна и для n чисел, примем ее без доказательства.
Теорема 3. Среднее арифметическое любых n неотрицательных чисел а1, а2,…аn не меньше их среднего геометрического, т.е.
Равенство достигается в том и только том случае, когда а1 = а2 = аn.
Неравенство Коши.
а) Двумерный вариант:
для любых неотрицательных чисел a, b c, d.
Доказательство. Так как a, b, c, d – неотрицательные, то ac + bd 0 и имеем право возвести в квадрат обе части неравенства (1):
(a2 + b2)(c2 + d2) (ac + bd)2 (2)
В первую очередь отметим, что неравенство a2 + b2 2ab, на котором основывались все выводы в предыдущих теоремах, является простым следствием тождества a2 – 2ab + b2 = (a – b)2, верного для всех действительных чисел. Рассмотрим произведение
(a2 + b2)(c2 + d2)
Произведя умножение, получим многочлен a2c2 + b2d2 + a2d2 + b2c2,
Совпадающий с тем, который получается после раскрытия скобок в выражении (ac + bd)2 + (bc – ad)2
Отсюда получаем
(a2 + b2)(c2 + d2) = (ac + bd)2 + (bc – ad)2 (3)
Так как квадрат (bc – ad)2 неотрицателен, то из (3) следует неравенство
(a2 + b2)(c2 + d2) (ac + bd)2
для любых действительных чисел a, b, c, d.
Мы получили неравенство (2) – неравенство Коши для любых действительных чисел a, b, c, d.
Для любых неотрицательных чисел a, b, c, d неравенство Коши примет вид (1). Из соотношения (3) вытекает, что равенство в (2), а значит и в (1) достигается тогда и только тогда, когда
bc – ad = 0 (4)
В этом случае говорят, что две пары чисел (a, b) и (c, d) пропорциональны. При с 0 и d 0 условие (4) можно записать следующим образом:
Геометрическая интерпретация.
Рассмотрим треугольник, изображенный на рисунке.
Очевидно, что длины отрезков OР и OQ и PQ определяются равенствами
ОР = (a2 + b2)½
ОQ = (c2 + d2)½
РQ = [(a – c)2 + (b – d)2]½
Обозначим угол между сторонами ОР и OQ через . На основании теоремы косинусов имеем:
PQ2 = OP2 + OQ2 – 2OP OQ cos
Подставляя значения OP, OQ, и РQ и упрощая полученное выражение, имеем
Поскольку значение косинуса всегда заключено между –1 и +1, мы имеем
-1 cos 1
или
значит
А это двумерный вариант неравенства Коши. Кроме того, мы видим, что равенство здесь достигается тогда и только тогда, когда сos =1, т.е. когда = 0 или = , - другими словами в том и лишь в том случае, когда точки О, Р, и Q лежат на одной прямой. При этом должно иметь место равенство подъемов прямых ОР и OQ; иначе говоря, если с 0 и d 0, то должно быть
б) Трехмерный вариант неравенства Коши.
Вышеприведенная интерпретация неравенства Коши для двумерного случая хороша еще и тем, что позволяет нам при помощи геометрической интуиции легко сообразить, какой вид будут иметь аналогичные результаты, относящиеся к более сложному случаю любого числа измерений. Перейдем к случаю трехмерного пространства. Пусть Р(а1, а2, а3) и Q(b1, b2, b3) – две точки, не совпадающие с началом координат О (0, 0, 0). Тогда косинус угла между прямыми ОР и OQ будет определяться равенством
которое, в силу того, что сos 1, приводит к трехмерному варианту неравенства Коши для неотрицательных чисел аi и bi, i = 1, 2, 3
Равенство здесь достигается тогда и только тогда, когда три точки О, Р и Q лежат на одной прямой, что выражается соотношениями
имеющими смысл при условии, что все числа bi, стоящии в знаменателях отличны от нуля.
Чисто алгебраическое доказательство трехмерного варианта неравенства Коши (1) можно вывести из следующего тождества:
(a12 + a22 + a32)(b12 + b22 + b32) – (a1b1 + a2b2 + a3b3)2 = (a12b22 + a22b12) +
+ (a12b32 + a32b12) + (a22b32 + a32b22) – 2a1b1a2b2 – 2a1b1a3b3 – 2a2b2a3b3 =
= (a1b2 – a2b1)2 + (a1b3 – a3b1)2 + (a2b3 – a3b2)2 (2)
Очевидно, что последнее выражение в (2) неотрицательно, так как оно состоит из суммы трех неотрицательных членов. Поэтому
(a12 + a22 + a32)(b12 + b22 + b32) – (a1b1 + a2b2 + a3b3)2 0.
Приведем еще одно доказательство этого неравенства, которое пригодится нам дальше.
Начнем с основного неравенства (х – у2) 0, которое можно записать в следующем виде:
Неравенство (3) имеет место для любых действительных чисел х и у. Вместо х и у последовательно подставим в (3) следующие выражения:
сначала:
затем
и, наконец,
где ai, bi – действительные числа.
Складывая три полученных таким образом неравенства, имеем
что бесспорно равносильно неравенству
(a12 + a22 + a32)½(b12 + b22 + b32)½ a1b1 + a2b2 + a3b3
А это неравенство равносильно неравенству (1) при ai, bi – неотрицательных.
в) n – мерный вариант неравенства Коши будет выглядеть так
где ai, bi, i = 1, 2, … n – неотрицательные числа.
Неравенство Гёльдера.
Одно из наиболее полезных неравенств математического анализа – неравенство Гёльдера. Оно утверждает, что для любой системы неотрицательных чисел ai и bi (i – 1, 2, … , n)
где числа р и q удовлетворяют условию
Фактически мы докажем неравенство (1) только для рациональных р и q. Однако окончательный результат сохраняет силу и для иррациональных р и q.
Начнем с неравенства