matemat (675836), страница 2

Файл №675836 matemat (Методические указания по курсу Математика для студентов I курса исторического факультета) 2 страницаmatemat (675836) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

20. x  (( y   x)  x); 21. (x y)  xy   ( x   y);

22. xy   ( x   y); 23. (  xy y )  xy;

24. (  xy x )  x y; 25.  (x y)  (  y   x);

26.  (x y)   ( y   x); 27. x   y  (xy   x);

28. x   y  ( y   x)   x; 29. x  ( y x   y );

30.  x  ( y  ( x   y)).

Примеры. А. Составить таблицу истинности формулы

(x   y)  (xy))  x   y.

Решение. Порядок выполнения действий:

x t


z

y v

x

y

y

x y

z

y  (x y)

t

(xz)

v

( x   y )

Ответ:

t v

И

И

Л

Л

И

Л

И

Л

Л

И

Л

И

И

И

И

Л

Л

И

Л

Л

Л

И

И

И

И

И

Л

И

Л

И

Л

И

Б. Проверить, является ли формула (x   y)  (xy))  (x   y) тавтологией.

Решение (аналогично решению предыдущей задачи, отличается лишь v: x   y.

x

y

y

x y

z

y  (x y)

t

xz

v

x  y

Ответ:

t v

И

И

Л

Л

И

Л

И

Л

Л

И

Л

И

И

И

И

Л

Л

И

Л

Л

Л

И

И

И

Л

И

И

И

И

И

И

И

Ответ: да, тавтология.

Задание 5.

Построить график дробно-рациональной функции (варианты 1-30), предварительно исследовав ее по следующему плану:

  1. найти область определения функции (для этого можно преобразовать формулу, разложив числитель и знаменатель на множители);

  2. если есть точки разрыва, то выяснить, есть ли в них вертикальные асимптоты (для этого найти в этих точках пределы функции слева и справа);

  3. найти наклонные или горизонтальные асимптоты (для этого преобразовать формулу функции, выделив целую часть из дроби);

  4. проверить, не обладает ли функция частными свойствами: а) четностью или нечетностью, б) периодичностью (если нет, то доказать, пояснить это);

  5. найти точки пересечения графика с осями координат и интервалы знакопостоянства, если точки пересечения с осью легко находятся;

  6. найти производную и критические точки;

  7. по знаку производной выяснить интервалы возрастания и убывания функции и что она имеет в критических точках;

  8. изобразить систему координат (в соответствии с исследованными свойствами) и отметить в ней все найденные точки, изобразить асимптоты; для уточнения вида графика найти координаты нескольких дополнительных точек; отметить их и нарисовать график;

  9. если в п.5 не были найдены точки пересечения графика с осью (нули функции), то найти их теперь по графику;

  10. найти область изменения функции (по графику и исследованным свойствам).

Варианты:

  1. ; 11) ; 21) ;

  2. ; 12) ; 22) ;

  3. ; 13) ; 23) ;

  4. ; 14) ; 24) ;

  5. ; 15) ; 25) ;

  6. ; 16) ; 26) ;

  7. ; 17) ; 27) ;

  8. ; 18) ; 28) ;

  9. ; 19) ; 29) ;

  10. ; 20) ; 30) .

Пример. Исследовать функцию .

Решение. 1) = = при (корни квадратного трехчлена найдены по обратной теореме Виета (в уме)),

значит, .

  1. а) при слева ; (1)

-8

-7,5

-7,1

-90

-159,5

-719,1

при справа ; (2)

-6

-6,5

-6,9

52

121,5

681,1

Значит, - вертикальная асимптота;

б) при (и слева и справа) ;

1,9

2,1

асимптоты нет; - исключенная точка (т. разрыва). (3)

  1. В

; т.к. при , то

; таким образом, прямая - наклонная асимптота.

  1. Исследуем на четность:

; видим, что: и , т.е. и , значит, общего вида (не обладает ни четностью, ни нечетностью); не является периодической как дробно-рациональная функция (многочлены – непериодические функции).

  1. а) при ; значит,

- точка пересечения графика с осью ординат; (4)

б) при , но , т.е. при или , т.о.

и - точки пересечения графика с осью абсцисс. (5)

С учетом точек разрыва и найденных значений функции (по (1), (2), (3) и (4), (5)) получаем: при ; при ;

при ; при .

(использована формула: );

а) нет критических точек, где не существует, т.к. не имеет значе-

ния только при , но ;

б) при и , т.е. при ; ;

значит, и - критические точки, а

; .

7)

+

0

-

нет зн.

-

0

+

+

нет зн.

выводы

от до

max

от

до

вертик.

асимпт

от

до

min

от

до

от

до

Т.к. при и , то преобразуем формулу ; тогда

; ;

; поэтому , ; , .

8) ;

-17

-14

-12

-3

3

8

13

-36

-36

-38

2,5

-2

2/3

4,5

9) см. 5).

10) .

5 y

-21 -17 -14 -12 -7 -2 0 7 12 x

-2

-12


-36

-38

-40

Приложение 2.

Темы рефератов

  1. Возникновение понятия числа; первые системы счисления.

  2. Математика в Древнем Египте.

  3. Математика в Древней Месопотамии (Шумер, Вавилон, Ассирия).

  4. Математика в Древнем Китае.

  5. Математика в Древней Греции (1 тысячелетие до н.э.).

  6. Пифагор. *)

  7. Аристотель.

  8. Евклид.

  9. Архимед.

  10. Математика Древней Греции и Древнего Рима (начало новой эры – I-V века; Александрийская школа).

  11. Средневековье. Математика в Индии.

  12. Математика в Средней Азии (VIII-XIII века, Улугбек, Омар Хайам и др.).

  13. Математика в древней Руси (VIII-XIII века).

  14. Математика в эпоху Возрождения (Западная Европа; XII-XV века).

  15. Леонардо Пизанский (Фибоначчи). XV век.

  16. Леонардо да Винчи. XV век.

  17. Франсуа Виет. XVI век.

  18. Джон Нэпер (Непер). XVI век.

  19. Кардано и Тарталья. XVI век.

  20. Коперник, Тихо Браге, Кеплер, Галилей. XVI век.

  21. Рене Декарт. XVII век.

  22. Блез Паскаль. XVII век.

  23. Исаак Ньютон. XVII век.

  24. Г.В.Лейбниц. XVII век.

  25. Пьер Ферма. XVII век.

  26. Даламбер. XVIII век.

  27. Леонард Эйлер. XVIII век.

  28. Ж.Л.Лагранж. XVIII век.

  29. А.М.Лежандр. XVIII век.

  30. Г.Монж. XVIII век.

  31. П.С.Лаплас. XVIII век.

  32. Математика в России XVII-XVIII веков (Роль реформ Петра I; Екатерина II).

  33. М.В.Ломоносов.

  34. Знаменитые задачи древности (об удвоении куба, о трисекции угла, о спрямлении окружности) и их разрешение (вплоть до XVIII века).

  35. К.Ф.Гаусс.

  36. Различные доказательства V постулата Евклида (до XIX в. н.э.).

  37. Н.И.Лобачевский

  38. Основные первоначальные факты геометрии Лобачевского, модели плоскости Лобачевского.

  39. Нильс Абель. XIX век.

  40. Эварист Галуа. XIX век.

  41. Огюстен Коши. XIX век.

  42. Карл Вейерштрасс. XIX век.

  43. М.В.Остроградский. XIX век.

  44. П.Л.Чебышёв. XIX век.

  45. С.В.Ковалевская. XIX век.

  46. Ф.Клейн. XIX век.

  47. А.Пуанкаре. XIX век.

  48. Г.Кантор. XIX век.

  49. Б.Риман. Конец XIX века.

  50. Д. Гильберт. Конец XIX века.

  51. Французская математическая школа (XVII-XX в.в.).

  52. Немецкая математическая школа (XVII-XX в.в.).

  53. Английская математическая школа (XVII-XX в.в.).

  54. Российская математическая школа (XVIII-началоXX в.в.).

  55. Советская математическая школа.

  56. Американская математическая школа (XIX-X X в.в.).

  57. Н.Винер.

  58. А.Н.Колмогоров.

  59. Математика XX века; основные направления развития.

  60. Основные стадии развития науки; основные черты современной математики и ее роль в развитии общества.

Примечание. Дополнительная литература к работе над рефератом не указана, т.к. подбор литературы входит как часть в самостоятельную работу студента (этому надо научиться). В пособии Д.Я.Стройка [11] в конце каждой главы есть список рекомендуемой литературы. Можно использовать то, что найдется в личной библиотеке или в ближайшей общественной, в т.ч. и статьи из журналов “Квант”, “Математика в школе” и других периодических изданий, а также энциклопедические словари.

Характеристики

Тип файла
Документ
Размер
1,59 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6363
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее