doclad (675771), страница 2
Текст из файла (страница 2)
И
так, матрица монодромии имеет следующий вид:
1 .[a≠2πk/ω (kR)] Как мы установили в примере 1, любое линейное уравнение вида при указанных ограничениях действительно имеет единственное периодическое решение с периодом ω.
2-3.[a=2π/ω; a=2πk/ω (k — любое целое число, не равное 1 и 0)]
При данных значениях а однородная система (**) из 1-го примера имеет нетривиальное периодическое решение с периодом ω, тогда в соответствии с замечанием к теореме 2 линейная неоднородная система уравнений, соответствующая заданному дифференциальному уравнению , может или вообще не иметь периодических решений с периодом ω (для случая 2 необходимо установить несовместность системы уравнений (13)), или иметь несколько периодических решений с периодом ω (для случая 3 необходимо установить, что система уравнений (13) имеет бесконечное множество решений).
С начала мы будем случаи 2 и 3 рассматривать совместно:
Система уравнений (13):
Н еоднородная система, соответствующая заданному дифференциальному уравнению:
Далее решать систему будем отдельно для каждого заданного значения а:
если в системе (***) справа будет получена нулевая матрица, то она имеет множество решений, если нет – не имеет их вообще.
2. Подставляем в систему (***)a=2π/ω:
3. Подставляем в систему (***)a=2πk/ω (k — любое целое число, не равное 1 и 0):
Таким образом,система (13') имеет бесконечное множество решений для данных значений а исходное дифференциальное уравнение имеет несколько линейно независимых периодических решений с периодом ω.
Замечание. Отдельно стоит рассмотреть случай, когда а=0 (этому случаю соответствует k=0, если a=2πk/ω).
Если а=0, то матрицы, обратной фундаментальной матрице системы (**), не существует, отсюда сразу следует несовместность системы (13'), а значит исходное линейное уравнение второго порядка не имеет периодических решений.
Задача решена.