84339 (675768), страница 4

Файл №675768 84339 (Лекции по математической статистике) 4 страница84339 (675768) страница 42016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

2. Для любого значения x, соответствующие значения y нормально распределены;

3. Для любого значения x, y – имеют одинаковую дисперсию .

При прогнозировании является ли среднее ошибок оценки подходящей мерой для прогнозирования.

Средняя ошибка оценки всегда равна нулю. Один из способов доказать этот факт, это выбрать в качестве меры прогнозирования дисперсию ошибки оценки.

Стандартная ошибка оценки

Стандартную ошибку оценки применяют для определения пределов, в окрестности предсказанного попадает фактическое значение yi.

В приделах Se – расположено 69% фактических значений объекта, в приделах 2Se – 95%, в приделах 3Se – 97,5%.

Связь b1 и b0 с другими описательными статистиками

Если x и y распределены по нормальному закону и имеют одинаковую дисперсию, то .

Поскольку rxy не зависит от Sx и Sy, b1 - принимает максимальное значение при rxy =1 и минимальное значение при rxy = -1, следовательно b1 никогда не может быть больше , при rxy =1 и не может быть меньше при rxy = -1.

Если между переменными отсутствует линейная связь, b1=0 уравнение регрессии сводится к прямой без наклона, то есть .

Измерение нелинейной связи между переменными

Для определения меры нелинейной связи между переменными используется коэффициент

Эта мера может быть использована и для оценки линейной связи.

Пример вычисления:

x/возраст

10

14

18

22

26

30

34

38

7

8

9

11

9

8

7

8

8

9

10

11

10

9

9

9

10

11

12

11

9

10

9

11

12

12

10

10

Находим среднее для каждого возраста и суммируем отношения каждого yi от среднего соответствующего группы.

Для 10 - =8,6; 18 – 9,5; 22 – 11,5; 26 – 10; 90 – 9; 34 – 8,67; 38 – 8.

- является мерой нелинейности связи и

Другие меры связи

  1. Измерения в дихотомической шкале (например, женат – не женат, мужчина – женщина)

  2. Измерение в дихотомической шкале наименований в предположении нормального распределения. Предполагается, что при более полных, более совершенных измерениях данные распределятся по нормальному закону.

  3. Шкала порядка

  4. Измерение в шкале интервалов или отношений.

1

2

3

4

1

A

(B)

(C)

(D)

2

B

E

(F)

(G)

3

C

F

H

(I)

4

D

G

I

J

Рассмотренный ранее коэффициент кореляции Пирсона соответствует сочетанию J при измерении исходных данных. Для описания степени кореляции при других комбинациях шкал измерений исходных данных используются следующие меры.

Случай A.

px – доля людей имеющих 1 по x, py – доля людей имеющих 1 по y

qx – доля людей имеющих 0 по x, qy – доля людей имеющих 0 по y

pxy - доля людей имеющих 1 по x и y

1

2

3

4

5

6

7

8

9

10

11

12

x

0

1

0

0

1

1

0

1

0

0

0

1

y

0

1

1

0

1

0

0

1

0

1

0

1

x – женат / холост

y – исключенные из учебного заведения / оставшиеся

px =0,4167 ; py = 0,5 ; qx =0,5833 ; qy = 0,5 ; pxy =0,333; φ=0,507

Если нет особого интереса к доле px и py, дихатомические данные располагают в таблице сопряженности признаков. Пример таблицы сопряженности по приведенным данным

φ

холост

женат

итог

исключ

2

(А)

4

(B)

6

A+B

оставш

5

(C)

1

(D)

6

C+D

итог

7

A+C

5

B+D

– определяется по формуле:

Коэффициент φ, это тот же коэффициент кореляции Пирсона, но эти данные не похожи на двумерное нормальное распределение, которое мы представляли при вычислении коэффициента Пирсона. Это рассматривается как большое неудобство статистиками.

Случай B.

Удовлетворительного коэффициента для этого случая не существует, рекомендуется исходить из предположения о нормальном распределении данных и вычислять φ в качестве меры связи для этого случая.

Случай C.

Для этого случая подходят коэффициенты, о котором мы расскажем в случае I.

Случай D.

Используется биссериальный коэффициент кореляции:

- среднее по x объектов имеющих 1 по y.

- среднее по x объектов имеющих 0 по y.

Sx – стандартное отклонение

Случай E.

Тетрахорический коэффициент кореляции:

Более удобно при расчете обращаться к статическим таблицам, содержащим вычисления из этого уравнения. Они составлены при условии, что bc/ad>1. В противном случае таблица содержит ad/bc и величина тетрахорического коэффициента будет отрицательной.

Случай F.

Удовлетворительного коэффициента не разработано, рекомендуется продположить нормальное распределение для x и использовать биссериальный ранговый коэффициент (см. случай G).

Случай G.

Биссериальный коэффициент:

u – ордината нормального распределения.

Случай H.

Используется коэффициент ранговой кореляции Спирмана:

В том случае, если при измерении встречается связанные ранги, это уравнение не подходит в качестве меры кореляции.

Связанный ранг возникает в том случае, если у некоторых объектов получено одинаковое значение переменной. В этом случае ранги, которые должны были бы получить эти объекты суммируются и делятся на количество объектов и каждый получает, пролученный при вычислении ранг.

До сих пор коэффициенты кореляции представляли из себя или могли быть объяснены в терминах произведения моментов. Коэффициент кореляции, не связвнный с моментами построен Кендаллом и называется τ – Кендалла

Случай I.

Для этого случая коэффициенты не разработаны, рекомендуется преобразовать оценки по y в ранги и найти или коэффициент Спирмана или Кендалла

Бисериальная ранговая кореляция:

P – сумма всех совпадений; Q – сумма всех инверсий;

n0 – число объектов при нулевой дихотомии; n1– число объектов при единичной дихотомии.

17

© 1999 by OlDiAn Co.

Характеристики

Тип файла
Документ
Размер
318,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6606
Авторов
на СтудИзбе
296
Средний доход
с одного платного файла
Обучение Подробнее