84339 (675768), страница 3

Файл №675768 84339 (Лекции по математической статистике) 3 страница84339 (675768) страница 32016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Стандартизованные данные

Часто появляется потребность оценить положение какого-либо конкретного значения по отношению к среднему в единицах стандартного отклонения

Любое множество данных можно преобразовать в такое множество, у которого среднее равно нулю, а стандартное отклонение равно единице.

Значение стандартизованных данных Z позволяют преобразовать множество x в произвольную шкалу с удобными характеристиками среднего и стандартизованного отклонения. Сами оценки Z могут быть отрицательными или содержать дроби. Мы избавимся от этих шероховатостей, умножая стандартизованные данные на константу и прибавляем к ним константу.

сz – будет иметь стандартное отклонение

, где с, d – константы – будут иметь среднее равное d.

Третий момент

Асимметрия – это свойство распределения частот. На практике симметричные полигоны и гистограммы не встречаются и чтобы выявить и оценить степень асимметрии, вводят следующую меру:

В единицах стандартного отклонения асимметрия равна:

Асимметрия бывает положительной и отрицательной. Положительная сдвигается влево, а отрицательная – вправо.

Чтобы упростить вычисление Ass можно использовать следующую формулу:

Асимметрия в этом уравнении принимает значения от –3 до +3

Четвертый момент

Эксцесс – это мера крутости кривой распределения. Унимодальная кривая распределения может быть островершинной, плосковершинной, средне вершинной.

Эксцесс для стандартных данных:

Характер распределения

Величина эксцесса

Нормальное

Островершинное

Плосковершинное

3

больше 3 и может быть очень большим

больше нуля, но меньше 3

Эти четыре момента составляют набор особенностей распределения при анализе данных.

Нормальное распределение

Нормальное распределение лучше всего описывается кривой созданной ДеМуавром по следующей формуле:

где U – высота кривой над осью x, и μ – числа, которые определяют положение кривой относительно числовой оси и регулируют ее размах. Для μ=0, =1 график принимает вид:

Эта кривая при μ=0, =1 получила статус стандарта, ее называют единичной нормальной кривой, то есть любые собранные данные стремятся преобразовать так, чтобы кривая их распределения была максимально близка к этой стандартной кривой. Созданы статистические таблицы со значениями площади под единичной нормальной кривой влево от любой точки на оси z в (-3; 3). Общая площадь под кривой равна 1. И все остальные площади рассматривают как процент от целого.

Свойства нормальных кривых:

Семейство нормальных кривых включают в себе все кривые, которые можно получить по данной формуле, отличающиеся друг от друга только парой значений и μ .

1. 68% площади лежит в интервале

2. 95% площади лежит в интервале

3. 99,7% площади лежит в интервале

Если x имеет нормальное распределение со средним μ и стандартным отклонение , то z равное характеризуется распределением со средним равным нулю и стандартным отклонением равным 1. Площадь между двумя значениями x в нормальном распределении равна площади между ux стандартизованными величинами в единичном нормальном распределении. Нормализованную кривую изобрели для решения задач теории вероятности, но оказалось на практике, что она отлично аппроксимирует распределение черт при большом числе наблюдений для множества переменных. Можно предположить, сто не имея материальных ограничений на количество объектов и время проведения эксперимента, статистическое исследование приводило к нормально кривой.

Двумерное нормальное распределение

Если при исследовании появляется вопрос о связи между двумя переменными для одного и того же объекта (например, рост и интеллект) мы говорим о двумерных связях и результаты эксперимента находят свое отражение в двумерном распределении частот.

Уравнение поверхности называется двумерным нормальным распределением (гладкая непрерывная колоколообразная поверхность)

Характеристики нормального распределения

  • Распределение значений x без учета значений y есть нормальное распределение;

  • Распределение значений y без учета значений x, тоже нормальное распределение;

  • Для каждого фиксированного значения x значение y дают нормальное распределение с дисперсией ;

  • Для каждого фиксированного значения y значение x распределяется нормально с дисперсией ;

  • Среднее значения y для каждого отдельного значения x ложатся на переменную.

Меры изменчивости

При решении вопроса о наличии взаимосвязи (корреляции) между двумя переменными, руководствуются несколькими коэффициентами. Связь, выраженная графически, называется диаграммной рассеивания, где x – оценка IQ, y – оценка теста по математике.

Положение каждого объекта на диаграмме распределения определяется парой значений xi, yi и выражаются по отношению к мере центральной тенденции величинами , . Если объект имеет высокие показатели по обеим переменным, то эти величины получаются большими и положительными, в противном случае, если xi, yi малы, то разность большой и отрицательной.

В дальнейшем будем говорить о произведении этих разностей и в том случае когда наблюдается прямая связь между этими переменными, произведение будет большим и положительным, следовательно такой же будет и сумма этих произведений .

В случае обратной связи, когда большим значениям yi соответствуют малые значения xi и наоборот, в этом случае произведение разностей будет большим и отрицательным и сумма разностей также будет большой и отрицательной.

Если между переменными не наблюдается какой-либо связи , количество положительных и отрицательных произведений примерно рано и сумма их близка к нулю. Таким образом большая положительная сумма – жесткая прямая зависимость; большая отрицательная сумма – сильная обратная зависимость; близость к нулю – отсутствие зависимости.

Недостатком этой меры является то, что ее величина зависит от числа пар переменных x участвующих в расчетах.

Чтобы избежать связь независимого состояния V групп, мы усредняем эти значения:

- ковариация

Частный случай, ковариация переменной с самой сабой – дисперсия

Чтобы избавить меру связи от отклонений двух групп значений:

- коэффициент кореляции Пирсона или произведение моментов.

Значение коэффициента Пирсона не может выйти за границы интервала (-1; 1).

Влияние линейного преобразования переменных на коэффициент кореляции

Вместо xi вводим в формулу bx+ a, где a, b – коэффициенты, для yi вводим в формулу dy+ c, где c, d – коэффициенты.

Вопрос о кореляции между переменными будучи решен положительно не означает наличия более общего вида связи (заработная плата учителям и количество поступивших в ВУЗы после окончания школы). Если мы проводим идентификацию групп с различным средним, наличие кореляции не исключено, но возможно другое объяснение взаимосвязи, чем вытекающее их эксперимента. Отсутствие связи при нулевом коэффициента Пирсона означает всего лишь отсутствие линейной связи.

Дисперсия суммы и разности переменных

Предсказание и оценивание

Переменная, которую мы хотим оценить называется зависимой переменной или откликом , обозначим ее через y.

Переменная которую мы используем для оценки называется независимой переменной или фактором, ее обозначим через x.

Конкретная характеристика (переменная x) имеющаяся в нашем распоряжении, позволяет получить до проведения эксперимента значение y, зависимой переменной. Мы получаем используя xi и коэффициенты b1 и b0.

Даже при наилучшем линейном предсказании, предсказание будет отличаться от реального yi на какую-то величину, которую мы назовем ошибкой оценки и обозначим ei:

Точность предсказания зависит от того, насколько удачно подобраны коэффициента b1 и b0. Критерием успешности подбора коэффициентов является минимальная величина суммы квадратов всех ошибок оценки критерий наименьших квадратов

Другой критерий: . Этот критерий приводит к медианой линии регрессии. Из уравнения следует

Исходя из минимизации формулы наименьших квадратов найдем формулы:

;

Наше исследование получается наиболее результативным, если мы предполагаем, что фактор и отклик имеют двумерные нормальные распределения.

Свойства двумерного нормального распределения

1. Выборочные средние отклика (y) для каждого значения x лежат на прямой;

Характеристики

Тип файла
Документ
Размер
318,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6606
Авторов
на СтудИзбе
296
Средний доход
с одного платного файла
Обучение Подробнее