decart list (675742)

Файл №675742 decart list (Кривые третьего и четвертого порядка)decart list (675742)2016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

20


Чувашский государственный университет им. И.Н. Ульянова

Кафедра высшей математики

КУРСОВАЯ РАБОТА

на тему:

«Кривые третьего и четвертого порядка»

Выполнили: студенты

группы С-12-00

Пинаев И.Н.

Искаков Р.Р.

Проверила:

доцент кафедры высшей математики

к.ф.-м.наук Самарина С.М.

Чебоксары, 2002

Декартов лист

1. Особенности формы. Декартовым листом называется кривая 3-го порядка, уравнение которой в прямоугольной системе имеет вид

(1)

Иногда удобно пользоваться параметрическими уравнениями декартова листа, которые можно получить, полагая y=tx, присоединяя к этому равенству равенство (1) и решая полученную систему относи­тельно х и у, в результате будем иметь:

(2)

откуда следует, что декартов лист является рациональной кривой.

Заметим еще, что полярное уравнение декартова листа имеет вид

(3)

Координаты х и у входят в уравнение декартова листа симмет­рично, откуда следует, что кривая симметрична относительно биссектрисы у=х. Обычное исследование на особые точки при­водит к заключению, что начало координат является узловой точкой декартова листа. Уравнения касательных к алгебраической кривой в ее особой точке, совпадающей с началом координат, можно получить, как известно, приравнивая нулю группу членов низшей степени из уравнения этой кривой. В нашем случае имеем З аху = 0, откуда получим х = 0 и у = 0 – искомые уравнения касательных в узловой точке. Эти касательные совпадают с координатными осями и, следовательно, в начале координат кривая пересекает сама себя под прямым углом. Легко видеть, что в первом координатном угле кривая делает петлю, которая пересекается с прямой у = х в точке

Точки этой петли, в которых касательные парал­лельны координатным осям, имеют координаты

и (cм. рис. 1)

Для окончательного заключения о форме кривой следует еще найти асимптоту Заменяя в уравнении кривой у на приравняем нулю в полученном уравнении коэффициенты двух членов с высшими степенями х. Получим

и b = - а. Таким образом, де­картов лист имеет асимптоту

у = — х — а; следовательно, во 2-м и 4-м координатных углах ветви декартова листа уходят в бесконечность.

Рис. 1

2. Свойства. Согласно теоре­ме Маклорена, если в трех точках алгебраи­ческой кривой 3-го порядка, ле­жащих на одной прямой, про­вести касательные к этой кривой, то точки их пересечения с кривой будут лежать также на прямой линии. Применительно к декартову листу эта теорема доказывается просто. Выведем с этой целью предварительно условие пребывания трех точек декартова листа, соответствующих значениям t1 , t2 и t3 параметра, на одной прямой. Если уравнение прямой имеет вид y=kx+b, то значения параметра, соответствующие точкам пере­сечения этой прямой с кривой, должны удовлетворять системе

Система эта приводит к уравнению

корни которого и будут искомыми значениями t1 , t2 и t3 параметра, откуда следует, что

(4)

Это равенство и является условием пребывания трех точек M1(t1 ), M2(t2), М3 (t3) декартова листа на одной прямой.

Располагая этим условием, покажем справедливость теоремы Маклорена для декартово листа. Действительно, касательную в точке M1 (t1) можно рассматривать как прямую, которая пересекает декар­тов лист в двух совпадающих между собой точках, для которых t2=t1, и в третьей точке, для которой соответствующее значение параметра обозначим через T1. Условие (4) примет вид t12 T1= -1. Для касательных в точках М2 и M3 получим аналогичные соотношения t22 T2 = -1 и t32 T3 = -1. Перемножая эти три равен­ства, будем иметь

(t1t2t3)2T1T2T3 = -1. откуда на основании (4) заключаем, что и T1T2T3 = -1, т. е. точки N1(T1), N2(T2) и N3(T3) лежат на одной прямой.

Определяя площадь, ограниченную петлей декартова листа, получим:

3. Способ построения. Заметим предварительно, что если ось симметрии декартова листа принять за ось абсцисс, то уравнение его примет вид

(5)

Пусть теперь имеется окружность с радиусом r и центром в точке

и прямая х= -h. Возьмем произвольную точку Q этой окружности и проведем прямую QA и прямую QN, перпендикуляр­ную к оси абсцисс (рис. 2). Из точки пересечения R прямой QA с прямой х= -h проводим прямую RO до пересечения ее в точке Q1 с прямой QN. Та­ким образом, точке Q на окруж­ности будет поставлена в соответ­ствие точка Q1. Геометрическое место точек Q1 представляет со­бой декартов лист.

Рис 2.

Для доказательства заметим, что координаты точки Q можно записать в виде

угол, состав­ляемый радиусом круга, проведенным в точку Q, с положительным направлением оси абсцисс. В соответствии с этим уравнение прямой QA может быть записано в виде

Полагая в этом уравнении х= -h, находим ординату

точки R. Отсюда следует, что уравнение прямой RQ1 запишется в виде

(6)

В то же время уравнение прямой Q1N имеет вид

(7)

Исключая из уравнений (6) и (7) параметр w, находим уравнение гео­метрического места точек Q1 в виде

Сопоставляя его с уравнением (5), заключаем, что найденное геомет­рическое место точек является декартовым листом.

Преобразование точек окружности в точки декартова листа, осу­ществляемое при таком его построении, называется преобразованием Маклорена.

4. Историческая справка. Впервые в истории математики кривая, названная впоследствии декартовым листом, определяется в письме Декарта к Ферма в 1638 г. как кривая, для которой сумма объемов кубов, построенных на абсциссе и ординате каждой точки, равняется объему параллелепипеда, построенного на абсциссе, ординате и неко­торой константе. Форма кривой устанавливается впервые Робервалем, который находит узловую точку кривой, однако в его представлении кривая состоит лишь из петли. Повторяя эту петлю в четырех квад­рантах, он получает фигуру, напоминающую ему цветок с четырьмя лепестками. Поэтическое название кривой «лепесток жасмина», однако, не привилось. Полная форма кривой с наличием асимптоты была определена позднее (1692) Гюйгенсом и И. Бернулли. Название «декартов лист» прочно установилось только с начала 18 века.

Циссоида Диоклеса

1. Особенности формы. Среди многих способов образования циссоиды—кривой, открытой древними в поисках решения знамени­той задачи об удвоении куба, мы остановимся сначала на простейшем. Возьмем окружность (называемую производящей) с диаметром ОА=2а и касательную АВ к ней. Через точку О проведем луч ОВ и на нем отложим отрезок ОМ=ВС. Построенная таким обра­зом точка М принадлежит циссоиде. Повернув луч на некоторый угол и проделав указанное построение, мы найдем вторую точку циссоиды, и т. д. (Рис. 3).

Если точку О принять за полюс, то но откуда получаем полярное уравнение циссоиды

(1)

Пользуясь формулами перехода от полярных координат к декартовым, найдем уравнение циссоиды в пря­моугольной системе:

(2)

Параметрические уравнения циссоиды можно получить, пола­гая x=ty, тогда, на основании уравнения (2), придем к системе

Рис. 3

Уравнение (2) показывает, что циссоида является алгебраической кривой 3-го порядка, а из уравне­ний (3) следует, что она является рациональной кривой.

Циссоида симметрична относи­тельно оси абсцисс, имеет бесконеч­ные ветви; касательная к производящей окружности, т. е. прямая х = 2а, служит для нее асимптотой; начало координат является точ­кой возврата 1-го рода.

2. Свойства. Кинематически циссоида может быть получена как траектория середины М катета ВС треугольника АВС, передвигаю­щегося в плоскости чертежа так, что его вершина В скользит по оси ординат, а другой катет АС всегда проходит через неподвижную точку Е на оси абсцисс. (Рис. 4)

Действительно, обозначив середину отрезка ОЕ через D, замечаем, что поскольку ВС=ЕО, ВСЕ= ВЕО, откуда /_ ВЕО = /_ СВЕ, и, следовательно, NBE равнобедренный, а так как ЕD=ЕО/2=ВС/2=ВМ, то отрезок DM параллелен отрезку BE. Пусть, далее, точка К есть точка пересечения с продолжением отрезка DM пря­мой, проходящей через точку В параллельно оси абсцисс. Опишем окружность с центром в начале координат и радиусом, равным OD, и проведем к ней касательную во второй точке пересечения с прямой ЕО. Она пройдет, очевидно, через точку К. Обозначив точку пересечения прямой DMK с окружностью через F, заметим, что тре­угольники DOF и МВК равны между собой. Из равенства их сле­дует, что DF=MK, а значит, и DM=FK. Последнее равенство и показывает, что геометрическое место точек М будет циссоидой.

Характеристики

Тип файла
Документ
Размер
291 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее