decart list (675742), страница 2

Файл №675742 decart list (Кривые третьего и четвертого порядка) 2 страницаdecart list (675742) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Другие способы образования циссоиды основаны на ее соотноше­ниях с параболой. Покажем в первую очередь, что циссоида яв­ляется подэрой параболы относительно ее вершины.

– уравнение данной параболы. Уравнение каса­тельной в произвольной точке М (, ) этой параболы можно записать в виде уравнение перпендикуляра, опущенного из

Рис. 4.

начала координат на эту касательную, будет координаты точки N пересечения его с касательной определятся по формулам

(4)

Исключая из этих равенств параметр , мы получим уравнение

выражающее циссоиду.

Заметим далее, что координаты точки, симметричной началу коор­динат относительно касательной к параболе у2 = 2рх, получатся, если правые части формул (4) удвоить, и, следовательно, определятся формулами

Исключая из этих равенств параметр , мы снова получим циссоиду с уравнением Отсюда следует, что циссоида является геометрическим местом точек, симметричных вершине параболы относительно ее каса­тельных.

Следует заметить, что геометрическое место точек, симметричных началу координат относительно касательной к параболе, можно рас­сматривать как траекторию вершины другой параболы, одинаковой с данной, которая катится по данной параболе. Таким образом, возни­кает новый способ кинематического образования циссоиды как тра­ектории вершины параболы, которая без скольжения катится по другой такой же параболе.

Остановимся на метрических свойствах циссоиды; при этом нам будет удобно пользоваться параметрическими уравнениями циссоиды в виде

Площадь, ограниченная циссоидой и ее асимптотой, равняется утроенной площади производящего круга; действительно,

Это соотношение получено было Гюйгенсом и независимо от него Ферма.

Рис. 5.

Определяя площадь криволинейного треугольника ОАМС (рис.5), найдем, интегрируя в границах до что она равна Если теперь провести касательные в точках А и С к производящему кругу, то площадь криволинейного треугольника CMANC будет равна

Выражение, стоя­щее в правой части, определяет утроенную площадь криволинейного треугольника CLANC. Итак, пл. CMANC =3 пл. CLANC. Это соотношение было открыто также Гюйгенсом.

Объем тела, образованного вращением части плоскости, ограни­ченной циссоидой и ее асимптотой, вокруг оси ординат определится по формуле

Если учесть, что объем тора, получаемого от вращения производя­щего круга вокруг оси ординат, равняется то из полученного результата следует, что объем тела, получаемого вращением части плоскости, ограниченной циссоидой и ее асимптотой, вокруг оси ординат, в пять раз больше объема тора, полученного от вра­щения производящего круга вокруг той же оси. Это соотношение было получено также Гюйгенсом.

Пусть теперь хс — абсцисса центра тяжести части плоскости, ограниченной циссоидой и ее асимптотой; тогда по теореме Гюльдена будем иметь V == U • 2хс, где V и U—соответственно объем и площадь, которые были определены выше. Подставляя их значения

в соотношение Гюльдена, получим

Таким образом, центр тяжести части плоскости, ограни­чиваемой циссоидой и ее асимптотой, делит отрезок между вершиной и асимптотой на две части, отношение которых равно 5.

Это соотношение позволяет в свою очередь определить объем тела, полученного вращением циссоиды вокруг ее асимптоты. По тео­реме Гюльдена будем иметь

Этот результат можно истолковать также как объем тора, полученного от вращения производящего круга вокруг асимптоты. Таким образом, объем тела, полученного вращением циссоиды во­круг ее асимптоты, равен объему тора, полученного от вращения производящего круга. Это соотношение установлено впервые Слюзом.

Длина дуги циссоиды от ее вершины до точки с абсциссой х определится по формуле

3. Применение циссоиды к решению делосской задачи. Как уже говорилось, циссоида была открыта древними в поисках решения делосской задачи об удвоении куба. История возникновения этой задачи, согласно легенде, передаваемой Эратосфеном, такова: на острове Делосе жители страдали от мора, посланного им богами; по предсказанию оракула богов можно было умиротворить, удвоив объем жертвенника, имевшего форму куба. Суть задачи сводилась к определению ребра куба, объем которого был бы в два раза больше объема данного куба. Что касается самого повода постановки задачи, то справедливо полагать, что «пифия находилась скорее под внуше­нием математиков, нежели вдохновлялась самим богом» (Цейтен), так как задача об удвоении куба являлась естественным перенесением в пространство планиметрической задачи о построении квадрата с пло­щадью, в два раза большей площади данного квадрата, и, следовательно, могла скорее возникнуть в сознании математика, нежели в сознании оракула.

Открытие циссоиды для целей решения делосской задачи при­писывается Диоклесу, жившему в 3 веке до нашей эры. Воз­можность найти графическим путем ребро куба с объемом, в два раза большим объема данного куба, усматривается из следую­щих соображений. Пусть b – ребро данного куба, а В – ребро искомого; тогда и, следовательно, Отсюда ясно, что графическое решение задачи должно свестись к построению

Пе­репишем для этой цели уравнение циссоиды в виде Заметим далее, что прямая отсекает от касательной отрезок (рис. 6)

(5)

и пересекает циссоиду в точке М, координаты которой удо­влетворяют уравнению

Это уравнение можно рассматривать как уравнение прямой, проходящей через точку А (2а, 0) и отсекающей на оси ординат отрезок

(6)

Если теперь принять и на оси ординат отложить отрезок ОС == 2, соединить затем точку С с точкой А(1, 0), а точку пересечения прямой СА с циссоидой соединить с точкой О и продолжить полученный отрезок до пересечения с касательной, то, как это следует из фор­мул (5) и (6), отрезок AD и будет равен

Древние рассматривали только ту часть циссоиды, которая нахо­дится внутри производящего круга. Вместе с дугой окружности производящего круга эта часть образует фигуру, напоминающую лист плюща, откуда проистекает название кривой. Наличие бесконечных ветвей у циссоиды было установлено в 17 веке Робервалем и неза­висимо от него Слюзом. Кинематический способ образования циссоиды с помощью треугольника приписывается Ньютону, который выполнил также спрямление циссоиды не только аналитическим путем, но и графическим.

Рис. 6

Кардиоида

1. Уравнение. Кардиоиду можно определить как траекторию точ­ки, лежащей на окружности круга радиуса r, который катится по ок­ружности неподвижного круга с таким же радиусом. Она будет представ­лять собой, таким образом, эпициклоиду с модулем m, равным 1.

Это обстоятельство позволяет сразу же записать параметрические уравнения кардиоиды, заменяя в ранее приведенных параметрических уравнениях эпициклоид модуль m единицей. Будем иметь:

(1)

Чтобы получить полярное уравнение кардиоиды, удобно принять за полюс точку А (рис.7), а полярную ось направить по оси абсцисс. Так как че­тырехугольник AOO1M бу­дет равнобедренной трапе­цией, то полярный угол  точки М окажется равным углу поворота производя­щего круга, т. е. парамет­ру t. Учитывая это обстоя­тельство, заменим во вто­ром уравнении системы (1) у через  sin t. Сокращая по­лученное таким образом ра­венство на sin t, получим полярное уравнение кардио­иды

Рис. 7

По виду этого уравнения

можно заключить, что кардиоида является одной из улиток Па­скаля. Она может быть определена, следовательно, как конхоида круга.

Переводя уравнение (2) в прямоугольную систему координат, получим:

(3)

Из этого уравнения следует, что кардиоида является алгебраической кривой 4-го порядка.

2. Свойства. Прежде всего, поскольку кардиоида является эпи­циклоидой с m=1, на нее можно перенести все свойства рассмот­ренных нами в предыдущем параграфе эпициклоид.

Вот эти свойства и характеристики.

1. Касательная в произвольной точке кардиоиды проходит через точку окружности производящего круга, диаметрально противопо­ложную точке касания кругов, а нормаль — через точку их касания.

2. Угол , составляемый касательной к кардиоиде с радиусом-вектором точки касания, равен половине угла, образуемого этим радиусом-вектором с полярной осью. Действительно

Из этого соотношения непо­средственно вытекает, что угол, составляемый касательной к кардио­иде с осью абсцисс, равняется (как внешний угол треугольника AMN Рис.8). Располагая формулой можно доказать, что касательные к кардиоиде, проведенные в концах хорды, проходящей через полюс, взаимно перпендику­лярны.

Действительно, так как

Характеристики

Тип файла
Документ
Размер
291 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее