Diplom (675712), страница 2
Текст из файла (страница 2)
Уравнение (1) линейно и однородно, поэтому сумма частных решений также является решением этого уравнения. Имея достаточно большое число частных решений, можно попытаться при помощи суммирования их с некоторыми коэффициентами найти искомое решение.
Поставим основную вспомогательную задачу: найти решение уравнения
не равное тождественно нулю, удовлетворяющее однородным граничным условиям
и представимое в виде произведения
где X (x) – функция только переменного x, T (t) – функция только переменного t.
Подставляя предполагаемую форму решения (12) в уравнение (1), получим:
или, после деления на XT,
Чтобы функция (12) была решением уравнения (1), равенство (13) должно удовлетворяться тождественно, т. е. 0 ‹ х ‹ , t › 0. Правая часть равенства (13) является функцией только переменного t, а левая – только х. Фиксируя, например, некоторое значение х и меняя t (или наоборот), получим, что правая и левая части равенства (13) при изменении своих аргументов сохраняют постоянное значение
где – постоянная, которую для удобства последующих выкладок берем со знаком минус, ничего не предполагая при этом о ее знаке.
Из соотношения (14) получаем обыкновенные дифференциальные уравнения для определения функций X (x) и T (t)
Граничные условия (11) дают:
Отсюда следует, что функция X (x) должна удовлетворять дополнительным условиям:
Так как иначе мы имели бы
в то время как задача состоит в нахождении нетривиального решения. Для функции T (t) в основной вспомогательной задаче никаких дополнительных условий нет.
Таким образом, в связи с нахождением функции X (x) мы приходим к простейшей задаче о собственных значениях:
найти те значения параметра
, при которых существуют нетривиальные решения задачи:
а также найти эти решения. Такие значения параметра называются собственными значениями, а соответствующие им нетривиальные решения – собственными функциями задачи (18). Сформулированную таким образом задачу часто называют задачей Штурма – Лиувилля.
Рассмотрим отдельно случаи, когда параметр отрицателен, равен нулю или положителен.
-
При
‹ 0 задача не имеет нетривиальных решений. Действительно, общее решение уравнения (15) имеет вид
Граничные условия дают:
Х (0) = С1 + С2 = 0;
т. е.
Но в рассматриваемом случае – действительно и положительно, так что
. Поэтому
С1 =0, С2 = 0
и, следовательно,
-
При
= 0 также не существует нетривиальных решений. Действительно, в этом случае общее решение уравнения (15) имеет вид
Х (х) = С1х + С2.
Граничные условия дают:
т. е. С1 = 0 и С2 = 0 и, следовательно,
Граничные условия дают:
Если Х(х) не равно тождественно нулю, то D2 0, поэтому
или
где n- любое целое число. Следовательно, нетривиальные решения задачи (18) возможны лишь при значениях
Этим собственным значениям соответствуют собственные функции
где Dn – произвольная постоянная.
Итак, только при значениях , равных
существуют нетривиальные решения задачи (11)
определяемые с точностью до произвольного множителя, который мы положили равным единице. Этим же значениям n соответствуют решения уравнения (9)
где An и Bn – произвольные постоянные.
Возвращаясь к задаче (1), (9), (10), заключаем, что функции
являются частными решениями уравнения (1), удовлетворяющими граничным условиям (11) и представимыми в виде произведения (12) двух функций, одна из которых зависит только от х, другая – от t. Эти решения могут удовлетворить начальным условиям (10) нашей исходной задачи только для частных случаев начальных функций (x) и (x).
Обратимся к решению задачи (1), (9), (10) в общем случае. В силу линейности и однородности уравнения (1) сумма частных решений
также удовлетворяет этому уравнению и граничным условиям (9). Начальные условия позволяют определить An и Bn. Потребуем, чтобы функция (24) удовлетворяла условиям (10)
Из теории рядов Фурье известно, что произвольная кусочно-непрерывная и кусочно-дифференцируемая функция f(x), заданная в промежутке , разлагается в ряд Фурье
где
Если функции (x) и (x) удовлетворяют условиям разложения в ряд Фурье, то
Сравнение этих рядов с формулами (25) показывает, что для выполнения начальных условий надо положить
чем полностью определяется функция (24), дающая решение исследуемой задачи.
Итак, мы доказали, что ряд (24), где коэффициенты An и Bn определены по формуле (30), если он допускает двукратное почленное дифференцирование, представляет функцию u (x, t), которая является решением уравнения (1) и удовлетворяет граничным и начальным условиям (9) и (10).
Замечание. Решая рассмотренную задачу для волнового уравнения другим методом, можно доказать, что ряд (24) представляет решение и в том случае, когда он не допускает почленного дифференцирования. При этом функция должна быть дважды дифференцируемой, а
- один раз дифференцируемой.
Глава 2. УРАВНЕНИЯ ПАРАБОЛИЧЕСКОГО ТИПА
§2.1. Задачи, приводящие к уравнениям гиперболического типа.
-
Уравнение распространения тепла в стержне.
Рассмотрим однородный стержень длины . Будем предполагать, что боковая поверхность стержня теплонепроницаема и что во всех точках поперечного сечения стержня температура одинакова. Изучим процесс распространения тепла в стержне.
Расположим ось Ох так, что один конец стержня будет совпадать с точкой х = 0, а другой – с точкой х = .
0
x1
x2
Рис. 2.1.
Пусть u (x, t) – температура в сечении стержня с абсциссой х в момент t. Опытным путем установлено, что скорость распространения тепла, т. е. количество тепла, протекающего через сечение с абсциссой х за единицу времени, определяется формулой
где S – площадь сечения рассматриваемого стержня, k – коэффициент теплопроводности.
Рассмотрим элемент стержня, заключенный между сечениями с абсциссами х1 и х2 (х2 – х1 = х). Количество тепла, прошедшего через сечение с абсциссой х1 за время
t, будет равно
то же самое с абсциссой х2:
Приток Q1 -
Q2 в элемент стержня за время
t будет равняться:
Этот приток тепла за время t затратился на повышение температуры элемента стержня на величину
u:
или
где с – теплоемкость вещества стержня, – плотность вещества стержня (
xS – масса элемента стержня).
Приравнивая выражения (4) и (5) одного и того же количества тепла , получим:
(6)
Это и есть уравнение распространения тепла (уравнение теплопроводности) в однородном стержне.
Чтобы решение уравнения (6) было вполне определено, функция u (x, t) должна удовлетворять краевым условиям, соответствующим физическим условиям задачи. Краевые условия для решения уравнения (6) могут быть различные. Условия, которые соответствуют так называемой первой краевой задаче для , следующие:
u (x, 0) = φ(x), (7)
u (0, t) = ψ1(t), (8)
Физическое условие (7) (начальное условие) соответствует тому, что при в разных сечениях стержня задана температура, равная φ(x). Условия (8) и (9) (граничные условия) соответствуют тому, что на концах стержня при х = 0 и при х =
поддерживается температура, равная ψ1(t) и ψ2(t) соответственно.
Доказывается, что уравнение (6) имеет единственное решение в области , удовлетворяющее условиям (7) – (9).
2.1.2. Распространение тепла в пространстве.
Рассмотрим процесс распространения тепла в трехмерном пространстве. Пусть u (x, y, z, t) – температура в точке с координатами (x, y, z) с момент времени t. Опытным путем установлено, что скорость прохождения тепла через площадку s, т. е. количество тепла, протекающего за единицу времени, определяется формулой (аналогично формуле (1))
где k – коэффициент теплопроводности рассматриваемой среды, которую мы считаем однородной и изотропной, n – единичный вектор, направленный по нормали к площадке s в направлении движения тепла. Таким образом, можем записать:
где – направляющие косинусы вектора n, или
Подставляя выражение в формулу (10), получаем:
Количество тепла, протекающего за время ∆t через площадку ∆s, будет равно:
Вернемся к поставленной задаче. В рассматриваемой среде выделим малый объем V, ограниченный поверхностью S. Количество тепла, протекающего через поверхность S, будет равно:
где n – единичный вектор, направленный по внешней нормали к поверхности S. Очевидно, что формула (11) дает количество тепла, поступающего в объем V (или уходящего из объема V) за время t. Количество тепла, поступившего в объем V, идет на повышение температуры вещества этого объема.