Integraly (675707), страница 3

Файл №675707 Integraly (Интеграл и его свойства) 3 страницаIntegraly (675707) страница 32016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

- (10)

Интегрирование по частям в определенном интеграле. Пусть u(x) и v(x) – дифференцируемые на отрезке [a; b] функции переменной х. Тогда d(uv)=udv+vdu. Проинтегрируем обе части последнего равенства на отрезке [a; b]:

- (11)

С другой стороны, по формуле Ньютона-Лейбница

Следовательно, формула (11) принимает вид:

- (12)

Формула (12) называется формулой интегрирования по частям в определенном интеграле.

      1. Вычисление площадей плоских фигур.

Площадь криволинейной трапеции, ограниченной кривой y=f(x) [f(x) ≥ 0], прямыми x=a и x=b и отрезками [a; b] оси Ох, вычисляется по формуле:

Площадь фигуры, ограниченной кривыми y=f1(x) и y=f2(x)[f1(x) ≤ f2(x)] и прямыми x=a и x=b, находится по формуле:

Если кривая задана параметрическими уравнениями x=x(t), y=y(t), то площадь криволинейной трапеции, ограниченной этой кривой, прямыми x=a, x=b и отрезком [a; b] оси Ох, выражается формулой:

где t1 и t2 определяются из уравнений a=x(t1), b=x(t2) [y(t) ≥ 0 при t1tt2].

Площадь криволинейного сектора, ограниченного кривой, заданной в полярных координатах уравнением ρ=ρ(θ) и двумя полярными радиусами θ=α, θ=β (α < β), выражается интегралом:

      1. Определение и вычисление длины кривой, дифференциал кривой.

Если кривая y=f(x) на отрезке [a; b] - гладкая (т. е. производная y’=f’(x) непрерывна), то длина соответствующей дуги этой кривой находится по формуле:

При параметрическом задании кривой x=x(t), y=y(t) [x(t) и y(t) – непрерывно дифференцируемые функции] длина дуги кривой, соответствующая монотонному изменению параметра t от t1 до t2, вычисляется по формуле:

Если гладкая кривая задана в полярных системах координатах уравнением ρ=ρ(θ), α ≤ θ ≤ β, то длина дуги равна:

Дифференциал длины дуги. Длина дуги кривой определяется формулой:

где y=f(x) [a; b]. Предположим, что в этой формуле нижний передел интегрирования остается постоянным, а верхний изменяется. Обозначим верхний предел буквой х, а переменную интегрирования буквой t. Длина дуги будет функцией верхнего предела:

Практические задания

  1. Найти неопределенный интеграл, результат проверить дифференцированием:

1) .

Решение:

Проверка:

- верно.

___________________________________________________________________________

2) .

Решение:

Проверка:

- верно.

__________________________________________________________________________________

3) .

Решение:

Проверка:

- верно.

___________________________________________________________________________

4) .

Решение:

Проверка:

- верно.

___________________________________________________________________________

5) .

Решение:

Проверка:

- верно.

___________________________________________________________________________

6) .

Решение:

Проверка:

- верно.

___________________________________________________________________________

7) .

Решение:

Проверка:

- верно.

___________________________________________________________________________

8)

Решение:

Проверка:

- верно.

__________________________________________________________________________________

9) .

Решение:

Проверка:

- верно.

___________________________________________________________________________

2. Найти неопределенные интегралы:

1) .

Решение:

___________________________________________________________________________

2) .

Решение:

___________________________________________________________________________

3) .

Решение:

___________________________________________________________________________

4) .

Решение:

___________________________________________________________________________

5) .

Решение:

___________________________________________________________________________

6) .

Решение:

___________________________________________________________________________

7) .

Решение:

___________________________________________________________________________

8) .

Решение:

___________________________________________________________________________

9) .

Решение:

___________________________________________________________________________

10) .

Решение:

__________________________________________________________________________________

11) .

Решение:

___________________________________________________________________________

12) .

Решение:

___________________________________________________________________________

13) .

Решение:

___________________________________________________________________________

14) .

Решение:

___________________________________________________________________________

15) .

Решение:

___________________________________________________________________________

  1. Вычислить определенный интеграл:

1) .

Решение:

___________________________________________________________________________

2) .

Решение:

___________________________________________________________________________

3) .

Решение:

____________________________________________________________________________

  1. Найти несобственные интегралы или доказать их расходимость:

1) .

Решение:

- интеграл I рода.

- сходящийся.

____________________________________________________________________________

2) .

Решение:

- интеграл II рода.

- расходящийся.

____________________________________________________________________________

3) .

Решение:

___________________________________________________________________________________

3


Характеристики

Тип файла
Документ
Размер
879,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее