84285 (675699), страница 6

Файл №675699 84285 (Задачи Лоповок) 6 страница84285 (675699) страница 62016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

45. В окружность вписан выпуклый четырехугольник АВСD. Докажите, что АС • ВD = АВ • СВ + ВС • АВ.

46. Две хорды пересекаются внутри окружности. Докажите что произведения отрезков этих хорд равны.

47. Две хорды взаимно перпендикулярны. Докажите, что сумма квадратов отрезков этих хорд равна квадрату диаметр окружности.

48. Окружность проходит через вершину А параллелограмма АВСВ и пересекает прямые АВ, АС, АВ в точках Е С|, г>1. Докажите, что АВ • АВ\ + АВ • АВ^ == АС • АС (Рис. 40).

Ломаная

49. Ломаная состоит из 7 звеньев, угол между каждыми двумя смежными звеньями 150°. Докажите, что эта ломан;

имеет два звена, которые лежат на одной прямой или параллельны.

50. Даны п > 2 точек, не все из которых лежат на одной при мой. Докажите, что можно построить простую замкнутую ломаную, на звеньях которой размещаются все данные точки.

51. Сторона квадрата 12 см. Внутри его помещена ломаная длиной 51 см. Докажите, что эта ломаная имеет не менее четы­рех звеньев.

52. На сторонах треугольника АВС вне его построены квад­раты с центрами 0\, Оч, Оз. Точки Ао, Во, Со — середины сто­рон треугольника АВС, СцАоОдВ — параллелограмм (рис. 41). Докажите, что ломаные 0\ВСоОз и О^ВцСоВ равны.

53. Используя результат задачи 52, докажите, что отрез­ки 0\0у. и О^В равны и взаимно перпендикулярны. Выве­дите отсюда один из путей построения треугольника по центрам квадратов, построенных на его сторонах вне тре­угольника.

54. Замкнутая ломаная состоит из 1989 звеньев и не имеет самопересечений. Докажите, что прямая, не проходящая ни через одну вершину ломаной, не пересекает всех звеньев этой ломаной.

55. Турист двигался по ломаной, все звенья которой имели одинаковую длину, и записывал повороты, которые делал в ее вершинах: вправо 15°, 30°, 90°, 105°, влево 120°, вправо 75°, 30°, 90°. Был ли его маршрут замкнутым?

Многоугольник

56. У выпуклого многоугольника 1000 вершин, внутри него даны 2000 точек. Среди этих 3000 точек (вершин и данных) никакие три не лежат на одной прямой. Многоугольник разбит на треугольники, вершинами которых являются только точки из числа названных. При этом треугольники не перекрываются и каждая из 3000 точек является вершиной хоть одного тре­угольника. Определите общее число треугольников.

57. Докажите, что у выпуклого многоугольника имеется диагональ, которая больше, по крайней мере, двух его сторон.

58. Какое наибольшее число прямых углов может быть среди внутренних углов выпуклого многоугольника?

59. Каждая сторона п-угольника является диаметром круга. Зная, что эти круги содержат все внутренние точки много­угольника, определите возможные значения п.

60. Докажите, что пластинку в форме выпуклого пятиуголь­ника можно разрезать на три трапеции.

61. Докажите, что выпуклый га-угольник (п ~> 4) можно раз­делить на п — 2 трапеции.

62. Диагональ делит выпуклый пятиугольник на ромб АВВЕ и равносторонний треугольник ВСВ. Найдите угол АСЕ.

63. Докажите, что можно построить пятиугольник, стороны которого равны диагоналям некоторого пятиугольника.

64. Постройте пятиугольник по положению середин всех его сторон.

65. Постройте пятиугольник по положению середин всех его диагоналей.

66. АВСВЕР — шестиугольник, середины сторон которого К, Ь, М, К, О, Р. Докажите, что центры масс треугольников КМО и ШР совпадают.

67. В окружность вписан выпуклый семиугольник, у кото­рого градусные меры трех углов равны по 120°. Докажите, что среди сторон этого семиугольника есть две равные.

68. Стороны треугольника 5, 6, 10 см. Три прямые, соответ­ственно параллельные сторонам треугольника, попарно пере­секаются вне треугольника. Эти прямые пересекают стороны треугольника так, что образуется равносторонний шестиуголь­ник. Найдите его периметр.

69. Все углы выпуклого шестиугольника равны. Докажите, что разности длин его параллельных сторон одинаковы.

Площадь прямоугольника

70. Меньшая из боковых сторон прямоугольной трапеции а. Другая боковая сторона равна сумме оснований. Найдите пло­щадь прямоугольника, стороны которого равны основаниям названной трапеции.

71. Диагонали ромба 30 и 40 см. Вписанная в ромб окруж­ность касается его сторон в точках А, В, С, В. Найдите площадь четырехугольника АВСВ.

72. Длины сторон прямоугольника а и Ь. Как разрезать его на две части, из которых можно сложить квадрат, если:

а) о = 8 см» Ъ = 18 см; б) о == 9 см, Ь === 16 см?

73. Длины сторон прямоугольника выражаются целыми числами в сантиметрах, причем периметр (в сантиметрах) и пло­щадь (в квадратных сантиметрах) выражены одинаковыми числами. Найдите площадь прямоугольника.

74. Расстояния внутренней точки М от трех вершин квадра­та АВСВ такие: МА == 7 см, МВ = 17 см, МС == 23 см. Найдите площадь квадрата.

75. Даны три параллельные прямые, средняя из которых удалена от двух других на о и Ь. Найдите площадь квадрата, три вершины которого находятся на этих прямых.

76. В окружность радиуса Д вписан прямоугольник пери­метра Р. Найдите площадь прямоугольника.

Площадь параллелограмма

77. Найдите площадь параллелограмма по его периметру Р и двум высотам — Н\ и Н<г.

78. Отрезок ВМ лежит вне треугольника АВС, но его продол­жение пересекает сторону АС. Построены параллелограммы АВМВ и СВМЕ. Докажите, что сумма площадей этих параллело­граммов равна площади четырехугольника АВЕС.

79. На двух параллельных прямых отложены равные отрез­ки АВ и СВ, затем построены 4 параллелограмма (рис. 42).

Докажите, что сумма площадей двух первых параллелограммов равна сумме площадей двух других.

80. На рисунке 43 построены 6 параллелограммов аналогич­но задаче 79. Докажите, что 8\ + 82 + 8з = 6ч + 85 + 8е.

81. Найдите площадь параллелограмма, у которого острый угол та, а расстояния от центра параллелограмма до сторон равны т и ге.

82. Найдите площадь параллелограмма, у которого пери­метр Р = 65 см, а точка пересечения диагоналей удалена от сто­рон на 4 и 6 см.

83. Площадь ромба вдвое меньше площади квадрата, имею­щего такой же периметр, как ромб. Найдите углы ромба.

84. Площадь равностороннего треугольника АВС равна 8. Из точки М на ВС проведены прямые, параллельные АВ и АС. Какую наибольшую площадь может иметь площадь получен­ного параллелограмма?

Площадь треугольника

85. Докажите, что в каждом треугольнике аЪ + ас + &с > 6 8.

86. Найдите углы треугольника, у которого 8 (о2 + Ь2).

87. Докажите, что в каждом треугольнике

аЬ + Ь2).

88. Верно ли, что в треугольнике со сторонами а, Ь, с и высотами На, Ъ.ь, Нс: (а + Ь + с)

+ь+

89. Длины двух сторон треугольника а и Ь, биссектрисы углов при третьей стороне пересекаются под углом 15°. Найдите площадь треугольника.

90. Два равных прямоугольника имеют общую диагональ, докажите, что площадь их общей части больше половины пло­щади каждого прямоугольника.

91. Докажите, что площадь четырехугольника не больше произведения полу сумм длин противоположных сторон.

92. Около квадрата АВСВ описана окружность. Найдите на ней такую точку М, чтобы произведение МА • МВ • МС • МВ имело наибольшую возможную величину.

93. Площадь параллелограмма АВСВ равна О. Вершина М параллелограмма АМКВ делит ВС так, что ВМ : МС ===3:5. Найдите площадь общей части параллелограммов.

94. Площадь четырехугольника а, Ь, с, <1, внешние углы ос., (3, у, 6 (рис. 44). Найдите (аЬ зш та + + Ьс аш р + сд. вш -у + а<1 зш 6) : О.

95. У выпуклого четырехугольника АВСВ стороны АВ и СВ равны и лежат на двух взаимно перпендикулярных прямых. Докажите, что его площадь в 4 раза меньше раз­ности квадратов сторон АТ) и ВС.

96. Площадь квадрата, построенного на гипотенузе прямо­угольного треугольника в 8 раз больше площади треугольника. Найдите градусные меры острых углов треугольника.

97. АВСВ — параллелограмм, М — середина АВ, К — сере­дина ВС; АК и ВМ пересекаются в точке О. Найдите отношение площадей треугольника АОВ и параллелограмма АВСВ.

98. Две высоты треугольника делят его на две пары равно­великих частей. Найдите величины углов треугольника.

99. Разность двух сторон треугольника равна разности высот, проведенных к этим сторонам. Докажите, что эти сторо­ны лежат против острых углов.

100. Площадь остроугольного треугольника равна О. Из середины каждой стороны опущены перпендикуляры на другие стороны. Найдите площадь шестиугольника, ограниченного этими перпендикулярами (рис. 45).

101. Существует ли равнобокая трапеция, которая делится своей диагональю на части с отношением периметров 1 : 2 и отношением площадей 1 : З?

102. Найдите площадь прямоугольного треугольника, у ко­торого наибольшая медиана имеет длину т и образует с боль­шим катетом угол в 15°.

103. Из точки М, находящейся внутри равностороннего треугольника, опущены перпендикуляры на его стороны. Зная, что длины перпендикуляров 1, 4 и 7 см, найдите площади полученных четырехугольников.

104. Высота АВ и медиана АЕ == т треугольника АВС об­разуют со стороной АВ углы по <х. Найдите площадь треугольни­ка АВС (рис. 46).

105. Длины сторон треугольника 30, 30, 36 см. Найдите расстояние между центрами вписанной и описанной окруж­ностей.

106. Докажите, что в прямоугольном треугольнике про­изведение радиуса вписанной окружности на радиус описанной

окружности больше -д- площади треугольника.

107. Окружность, вписанная в прямоугольный треугольник, делит гипотенузу на части а и Ъ. Докажите, что площадь тре­угольника 8 == аЬ.

108. Длины сторон треугольника в сантиметрах выражены последовательными целыми числами. Найдите длины его сторон, зная, что радиус вписанной окружности 4 см.

109. Длины сторон треугольника в сантиметрах выражают­ся последовательными натуральными числами. Найдите эти стороны, зная, что площадь треугольника равна 1170см2.

110. Три прямые параллельны. Средняя из них удалена от двух других на 4 и 7 см. Найдите площадь равностороннего треугольника, вершины которого лежат на этих трех прямых.

Площадь трапеции

111. Треугольник разделен на три трапеции, общей верши­ной которых является центр масс треугольника. Сравните площади названных трапеций.

112. Площадь квадрата, построенного на диагонали равнобокой трапеции, в 4 раза больше площади трапеции. Найдите угол между диагоналями трапеции.

113. Сумма площадей квадратов, построенных на диагона­лях трапеции, в 4 раза больше площади трапеции. Докажите, что диагонали этой трапеции взаимно перпендикулярны.

114. Основания трапеции ВС и АВ, диагонали пересекаются в точке О. Площади треугольников АВО и ВСО равны 50 и 20 см2. Найдите площадь трапеции.

115. Угол между диагоналями равнобокой трапеции равен 60° (два случая). Как разрезать эту трапецию на возможно меньшее число частей, из которых можно сложить равносторон­ний треугольник?

116. Диагонали равнобокой трапеции взаимно перпендику­лярны. Продолжения боковых сторон АВ и СВ пересекаются в точке М под углом в 30°. Зная, что площадь треугольника ВМС равна О, найдите площадь трапеции.

117. В полукруг радиуса 2 см вписана трапеция, периметр которой равен 10 см. Найдите площадь трапеции.

Площади подобных фигур

118. Площадь треугольника равна 8. Каждую его сторону продлили на своей длины в обе стороны. Найдите площадь шестиугольника, который получился, когда соединили концы указанных отрезков.

119. В равносторонний треугольник АВС вписали треуголь­ник ВЕР, стороны которого соответственно перпендикулярны сторонам треугольника АВС. Найдите отношение площадей треугольников ВЕР и АВС.

120. Площадь треугольника АВС равна 120 см2. Каждую его сторону разделили в отношении 1:2:1. Через точки деле­ния провели три прямые, которые отсекли от треугольника три треугольника (рис. 47). Определите площадь оставшегося шестиугольника.

121. На высотах ВК и ВМ ромба АВСВ построили ромб. Зная, что его площадь вдвое меньше площади ромба АВСВ, найдите величины углов ромба.

122. Гипотенуза прямоугольного треугольника равна 24 см. Прямая, параллельная наименьшей медиане, разделила тре­угольник на части, площади которых относятся, как 1 : 7. Найдите длину отрезка этой прямой, ограниченного сторонами треугольника.

123. В прямоугольный треугольник, две большие стороны которого 8 и 10 см, вписана окружность. Построив касательные к ней, соответственно параллельные сторонам треугольника, получили шестиугольник. Найдите его площадь.

124. Основания трапеции 7 и 17 см. Прямая, параллельная основаниям, разделила трапецию на равновеликие части. Най­дите длину отрезка прямой, ограниченного боковыми сторонами трапеции.

125. Через внутреннюю точку М треугольника АВС проведе­ны три прямые, соответственно параллельные сторонам тре­угольника АВС. Площади образовавшихся треугольников с вер­шиной М равный), иг, <5з Найдите площадь треугольника АВС.

Правильные многоугольники

126. На сколько областей делят плоскость прямые, на кото­рых лежат все стороны данного правильного: а) шестиугольни­ка; б) восьмиугольника?

127. Треугольник АВС — равносторонний. Вне его построе­ны квадраты АВВ\А\, АСС\Ач, ВССчВч. Прямые АА\ и ССа, ВВ1 и СС\, АА-г и ВВг пересекаются в точках К, Ь, М (рис. 48). Докажите, что шестиугольник АКСЬВМ — правильный.

128. Постройте правильный шестиугольник с центром в дан­ной точке О, зная, что концы одной малой диагонали лежат на двух данных прямых.

129. Постройте правильный восьмиугольник, у которого центр находится в данной точке О, а концы двух апофем, про­веденных к смежным сторонам, находятся на данной окружно­сти и данной прямой.

130. Как изменится решение задачи 129, если концы назван­ных апофем лежат на данной окружности, центр которой не О?

131. На сторонах квадрата АВС^ вне его построены равно­сторонние треугольники АВК, ВСМ, СОР, ВАТ. Докажите, что середины отрезков КМ, МР, РТ, ТК, АК, ВК, ВМ, СМ, СР, ОР, ОТ, АТ являются вершинами правильного двенадцати­угольника.

132. Останется ли верным заключение задачи 131, если названные треугольники построены внутри квадрата?

133. Точка М находится в плоскости правильного шести­угольника АВСВЕР. Докажите, что можно построить шести­угольник, длины сторон которого равны расстояниям от точки М до вершин А, В, С, ^, Е, Р.

134. Известно, что некоторый пятиугольник имеет не менее двух осей симметрии. Является ли он правильным?

135. Выпуклый шестиугольник вписан в окружность и име­ет 3 оси симметрии. Является ли он правильным?

136. Выпуклый двенадцатиугольник вписан в окружность. Известно, что он имеет 3 оси симметрии. Является ли он пра­вильным?

137. Докажите следующие утверждения о разности диагона­лей правильного многоугольника А\АчАз..Ап'- а) при га = = 9 А\А^—А\Аг равна стороне многоугольника; б) при га = 18 А\Ад — А\Ач == А\А^.

138. Квадрат вписан в окружность. Через середины каждых двух смежных сторон квадрата построена прямая. Докажите, что точки пересечения этих прямых с окружностью и вершины квадрата являются вершинами правильного двенадцатиуголь­ника.

139. Прямая проходит через центр равностороннего тре­угольника АВС и пересекает сторону ВС. Под каким углом к ВС нужно строить эту прямую, чтобы ее отрезок, ограниченный двумя сторонами треугольника, имел наименьшую возможную длину?

140. Через центр квадрата проходят прямые. Докажите, что для всех этих прямых сумма квадратов их расстояний от вер­шин данного квадрата одинакова.

141. Останется ли верным утверждение задачи 140, если вместо квадрата дан равносторонний треугольник; правильный шестиугольник?

142. Отрезки, соединяющие середину каждой стороны квад­рата с концами параллельной стороны, ограничили выпуклый восьмиугольник (рис. 49). Является ли он правильным?

143. В треугольник вписан квадрат так, что две вершины его лежат на основании треугольника, а две — на боковых сторо­нах. Докажите, что сторона квадрата больше радиуса, но мень­ше диаметра окружности, вписанной в этот треугольник.

144. Постройте правильный шестиугольник с центром в дан­ной точке, зная, что концы одной из больших диагоналей шести­угольника лежат на данной прямой и на данной окружности.

145. Найдите точку, сумма квадратов расстояний от которой до всех вершин данного правильного многоугольника наимень­шая возможная.

146. а.п и Ьп — стороны вписанного и описанного правиль­ных многоугольников с числом сторон п. Докажите, что а|п =--^-а Ъ

— о ^п^п.

147. Впишите в данный правильный шестиугольник наи­больший возможный квадрат.

Площадь многоугольника

148. Середины сторон выпуклого шестиугольника после­довательно соединены отрезками. Докажите, что площадь по­лученного шестиугольника больше половины площади началь­ного шестиугольника.

149. Выполнив возможно меньшее число разрезов, сложите из трех равных правильных шестиугольников один правильный шестиугольник.

150. Решите задачу 149 для четырех правильных шести­угольников.

151. Докажите, что сумма расстояний от всех сторон выпук­лого равностороннего многоугольника (или их продолжений) у всех внутренних точек многоугольника одинакова.

152. Площадь правильного шестиугольника равна — про­изведения длин двух неравных диагоналей. Докажите.

153. Площадь правильного двенадцатиугольника равна квадрату его диагонали. Какой именно?

154. АВ и СВ — параллельные стороны правильного две­надцатиугольника, АС и ВО не пересекаются. Докажите, что АС и ВВ делят двенадцатиугольник на три равновеликие части.

155. На школьном вечере среди вопросов математической викторины был предложен такой: «Выразите площадь правиль­ного восьмиугольника А\А•^А^А^А^А!,А^Ау. через его линейные элементы». Поступили следующие ответы: 1) 2Д2 У2; 2) про­изведение наименьшей диагонали на наибольшую; 3) А\Аз Х X А\А^, 4) кубический корень из удвоенного произведения длин стороны и всех диагоналей, исходящих из одной вершины;

5) удвоенное произведение стороны на диагональ А\А^;

6) произведение двух неравных параллельных диагоналей. Какие из этих ответов правильны?

156. Уголки квадрата срезаны так, что получился правиль­ный восьмиугольник. На сколько процентов уменьшилась пло­щадь фигуры?

157. Сторона правильного шестиугольника равна а. Через вершину шестиугольника проведена прямая, разделившая его на части, площади которых относятся, как 1 : 3. Найди­те длину отрезка прямой, ограниченного сторонами шести­угольника.

158. Вычислите площадь многоугольника по координатам всех его вершин.

159. Четырехугольник АВСВ разделен на три части отрезка­ми, которые не пересекаются и делят стороны -АО и ВС на три равные части (рис. 50). Докажите, что площадь средней части равна трети площади четырехугольника АВСВ.

Длина окружности

160. Одна окружность построена на катете прямоугольного треугольника, как на диаметре. Другая окружность проходит через середины всех сторон треугольника. При каком условии обе окружности равны?

161. Сторона квадрата АВСВ равна 8см. Найдите длину окружности, которая проходит через точки А v. В ти касается стороны СО квадрата.

162. В окружность радиуса Л вписан правильный двена­дцатиугольник. Его малые диагонали пересекаются в точках, лежащих на некоторой окружности. Определите ее длину.

163. В окружность радиуса Д вписан равносторонний тре­угольник АВС. Найдите длину окружности, которая касается данной окружности и продолжений сторон АВ и АС треуголь­ника.

164. Радиус окружности 2 см. Две окружности с радиусами по 1 см касаются одна другой и внутренним образом касаются большей окружности. Найдите длину окружности, касающей­ся этих трех окружностей.

165. Периметр равностороннего треугольника АВС равен Р. Найдите длину окружности, которая касается стороны АВ и ме­диан АВ и ВЕ.

166. Длина отрезка равна половине длины окружности. Существуют разные способы его построения:

а) Герона Александрийского:

б) А. Коханского: АВ — диаметр окружности, СВ — каса­тельная, проходящая через точку В; А- СОВ == 30°, СВ == ЗЛ. Искомый отрезок — АВ (рис. 51);

в) X. Гюйгенса: искомый отрезок равен 8012 В;

г) Если катеты прямоугольного треугольника 8 и 9, то по­ловина длины окружности единичного радиуса равна разности между гипотенузой и 8, 9. Проверьте точность построения отрезка этими способами.

. 167. Как относятся длины окружностей, одна из которых описана около равностороннего треугольника, а другая про­ходит через центры вневписанных окружностей.

Длина дуги окружности

168. Хорды АВ и СВ окружности параллельны. Докажите, что дуги АС и ВВ равны.

169. Докажите, что если две хорды окружности равны, то равны и дуги, стягиваемые этими хордами.

170. Каждая сторона треугольника 6 см. По сторонам тре­угольника вне его катится круг радиуса 2 см. Определите длину пути центра круга за один оборот вокруг треугольника.

171. На стороне АВ == а правильного шестиугольника АВСВЕР вне его построен квадрат. Этот квадрат перемещается вокруг шестиугольника так, что все время одна из вершин квадрата совпадает с вершиной шестиугольника. Определите длину пути центра квадрата за один оборот вокруг шести­угольника.

172. Каждая вершина квадрата со стороной а является центром окружности радиуса а. Найдите периметр криволиней­ного четырехугольника, ограниченного названными окружно­стями.

173. Вершины прямоугольника делят описанную окруж­ность на части, длины двух из которых относятся, как 1 : 5. Найдите радианные меры углов, которые диагональ прямо­угольника образует с его сторонами.

174. Радианные меры двух углов треугольника -^- и -^ .

Найдите отношение длин сторон треугольника, лежащих про­тив названных углов.

175. Вершина А равностороннего треугольника АВС являет­ся центром окружности, проходящей через точки В и С. Бис­сектрисы углов В и С пересекают окружность в точках М и Р. Определите радианную меру центральных углов, соответствую­щих дугам РВ, ВС, СМ, МР.

Площадь круга и его частей

176. Периметр равностороннего треугольника Р. На высоте треугольника, как на диаметре, построена окружность. Опреде­лите площадь части круга, находящейся внутри треугольника.

177. Гипотенуза равнобедренного прямоугольного треуголь­ника о. На катете, как на диаметре, построена окружность. Найдите площадь той части круга, которая находится внутри

треугольника.

178. АВ — основание полукруга, точка М находится на окружности. Построены полукруги с диаметрами АМ и ВМ. До­кажите, что сумма площадей луночек (то есть частей полу­кругов, находящихся вне большого полукруга) равна площади

треугольника АМВ.

179. АВ — диаметр полукруга, С — точка этого диаметр" СО — перпендикуляр к АВ, причем точка В находится на ок­ружности. Построены полуокружности диаметров АС та ВС внутрь полукруга. Докажите, что площадь фигуры, ограничен­ной тремя названными полуокружностями (она называется арбелоном) равна площади круга диаметра СВ (рис. 52).

180. На диаметре полукруга АВ отложены равные отрезки АВ и СО. На АВ и СО, как на диаметрах, построены полукруги внутри большого полукруга, на ВС — вне большого полукруга. Радиусы ОЕ и ОР проходят через середину ВС перпендикулярно ВС. Докажите, что площадь фигуры, закрашенной желтым на рисунке 53, равна площади круга диаметра ЕР.

Теорема косинусов

181. Найдите периметр треугольника, у которого длины сторон (в сантиметрах) выражаются последовательными не­четными числами, а один из углов вдвое больше суммы

остальных.

182. Вычислите величины углов вписанного в окружность

четырехугольника, у которого длины сторон 14, 30, 40, 48.

183. Докажите, что в треугольнике АВС: аЬ сое С +

+ ас соз В + Ьс соа А ^ — Р2.

^•"ж"

' •'. \

184. Медианы АО и ВД треугольника АВС взаимно перпен­ дикулярны, докажите, что 5 АВ2 == АС2' + ВС2.

185. Вычислите (аЪ соа С + ас соа В + Ьс сов А) : (а2 + Ь'г+

-(- с2), где а, Ь, с, /- А, /- В, /- С — элементы одного треуголь­ ника.

186. На диаметре АВ окружности взята точка М; хорда СО параллельна АВ. Докажите, что величина МС2 + МО2 не

1 зависит от выбора точки С.

187. На сторонах треугольника с длинами сторон 5, 6, 7 вне треугольника построены квадраты. Найдите сумму квадра­тов сторон шестиугольника, вершинами которого являются вершины квадратов, находящиеся вне треугольника.

188. Квадрат произведения длин диагоналей параллело­грамма равен сумме четвертых степеней длин двух смежных сторон. Найдите величины углов параллелограмма.

189. Точка М находится на стороне ВС треугольника АВС. Докажите, что АМ2 • ВС = АВ2 • СМ + АС2 ' ВМ — ВС • ВМ X X СМ.

190. Окружности радиусов 1 и 2 касаются одна другой внешним образом и касаются окружности радиуса 3 внутрен­ним образом. Найдите радиус окружности, которая касается всех трех названных окружностей.

191. Внешние углы треугольника при вершинах А, В, С соответственно а, (3, у, докажите, что аЬ (1 — сое у) -\- ас (1 —

- С08 Р) + ЬС (1 - С08 и) == 4- Р2-

л

192. Докажите, что в треугольнике АВС'. аа ' с ~ ' =

о (6 + с — в)

_ 1 — сов А ~~ 1 — соа В '

193. Докажите, что треугольник АВС — остроугольный, если:

а) его периметр 17 см, а длина наибольшей стороны 7 см; б) его периметр 99 см, а длина наименьшей стороны 29 см.

194. Центр вписанной в прямоугольный треугольник окруж­ности удален от концов гипотенузы на 7 и 5 -л/2 см. Найдите длины сторон треугольника.

195. Докажите правильность формул для вычисления

площади треугольника: 8 =^ — -\/4 а^Ь2 — (о2 + Ь2 —• с2)2 =

= -1- -узГ^Ь2 + оУ + Ь^с2) -4 + Ь4 + с4).

196. Докажите, что в треугольнике АВС:

& С08 А + Ъ С08 В + С С08 С __ Г

о + Ь + с Л

197. Докажите, что в четырехугольнике АВСВ: АВ2 == == 4В2 + ВС2 + СО2 - 2 АВ • ВС . сое В - 2 ВС • СО • сов С+ + 2АВ • СО • соз (А + О).

8 9-12« 65

198. Если сумма квадратов диагоналей выпуклого четырех­угольника равна сумме квадратов двух противолежащих сторон, то продолжения двух других сторон пересекаются по, р прямым углом. Докажите.

Теорема синусов

199. Площадь треугольника АВС равна О. Определите величину а2 вт + Ь2 ат 2А.

200. Точка М находится внутри треугольника АВС. Лучи АМ, ВМ, СМ делят углы треугольника на части ои и оса, ?1 и {За, vi и у-г- Докажите, что вт а\ • вт р) • аш vi ==- ет К2 X

X 8Ц1 ?2 8Ш •У2.

201. Если лучи, исходящие из вершин треугольника, обра­зуют со сторонами при этих вершинах такие углы ои, »2, Рь

^2, vi» 72, ЧТО ЯШ ОЦ 8Ш ?! 81п ^1 == В™ Й2 8П1 ?2 8Ш 72, ТО ЭТИ ЛуЧИ

пересекаются в одной точке. Докажите.

202. Верно ли утверждение задачи 200 для четырехуголь­ника?

203. Докажите, что биссектриса внутреннего угла треуголь­ника делит сторону на части, обратно пропорциональные синусам углов треугольника, прилежащих к отрезкам стороны.

204. Высоты остроугольного треугольника АВС пересекаются в точке Н. Докажите, что АН == -——.

205. Диагонали выпуклого четырехугольника АВСВ пере­секаются в точке О. М\ и Мч — центры масс треугольников ВОС и АОВ, Н\ и Й2 — ортоцентры треугольников АВО и СОО. Используя результат задачи 204, докажите, что прямые М\Мч и Й1Й2 взаимно перпендикулярны.

206. АВ и АС — хорды окружности. На продолжении АВ отмечена точка N на расстоянии АВ от АС и на продолжении АС отмечена точка М на расстоянии АС от АВ. Докажите, что МН равен диаметру данной окружности.

Сумма квадратов диагоналей параллелограмма

207. Докажите, что в треугольнике Тоа == — "л/262 + 2с2 — о2.

А

208. Используя результат задачи 207, установите, что".

а) т1 + т1 + от? = -|-(о2 + Ь2 + с2); б) от4 + т1 + те4 =

-^(о4+&44).

209. Докажите, что з четырехугольнике сумма квадратов диагоналей меньше суммы квадратов сторон на учетверенный квадрат расстояния между серединами диагоналей.

210. Докажите, что четырехугольник, у которого сумма квадратов диагоналей равна сумме квадратов сторон, является параллелограммом.

211. Диагонали параллелограмма АВСВ пересекаются в точке О. Периметры треугольников АВО, ВСО и параллело­грамма соответственно 28, 30 и 48 см. Найдите диагонали параллелограмма.

212. Как по длинам сторон и углу между диагоналями параллелограмма найти длины диагоналей?

213. Как по длинам диагоналей и углу параллелограмма найти длины сторон параллелограмма?

ДЕСЯТЫЙ КЛАСС

Аксиомы стереометрии

и следствия из них

1. На двух плоскостях отмечены по две точки. Сколько различных плоскостей определяют эти точки?

2. Сколько различных плоскостей могут определять 5 точек? Подтвердите свой ответ перечислением плоскостей (обозначив точки буквами).

3. Сколько различных плоскостей могут определять 5 данных параллельных прямых? Обоснуйте ответ перечислением этих плоскостей.

4. Окружность имеет общую точку с каждой стороной четырехугольника. Можно ли утверждать, что обе эти фигуры лежат в одной плоскости?

5. Сколько существует плоскостей, каждая из которых содержит, по крайней мере, три вершины данного куба?

6. На сколько областей разбивают пространство плоскости всех граней куба?

7. На каждом из трех параллельных ребер куба отмечено по 2 точки. Сколько различных плоскостей могут определять эти точки?

8. Плоскость б пересекает плоскости ос и Р. Докажите, что если линии пересечения плоскостей пересекаются, то точка их пересечения находится на прямой, по которой пересекаются а и р.

9. Середины всех диагоналей пятиугольника лежат в одной плоскости, причем никакие две из них не совпадают. Докажите, что все его вершины лежат в той же плоскости.

10. Середины всех сторон многоугольника с нечетным числом вершин лежат в одной плоскости. Докажите, что все его вершины лежат в той же плоскости.

11. Даны п > 4 точек, каждые 4 из которых лежат в одной плоскости. Докажите, что все эти точки лежат в одной плос­кости.

Параллельность прямых в пространстве

12. Докажите, что две прямые параллельны тогда и только тогда, когда любая плоскость, пересекающая одну из них, пере­секает и другую.

13. Точки А, В, С, В лежат вне плоскости параллелограм­ма К^МN, причем К — середина АВ, Ь — середина ВС, М — середина СО. Является ли N серединой отрезка А07

14. Середины пяти сторон шестиугольника находятся в од­ной плоскости. Докажите, что середина шестой стороны находится в той же плоскости.

15. На двух пересекающихся плоскостях 6 и о дано по точке. Как построить через эти точки прямые, которые не пере­секают ни одной из названных плоскостей?

16. Через прямую I проходят две плоскости а и а. Две параллельные прямые пересекают эти плоскости: одна в точках А и В, другая — в точке С и еще одной, которую требуется построить.

17. Точки А, В, С, О не лежат в одной плоскости. Дока­жите, что середины шести отрезков с концами в этих точках являются серединами трех параллелограммов.

18. Точка М лежит вне плоскости правильного шести­угольника АВСОЕР. Верно ли, что прямая, проходящая через середины отрезков МВ и МС, параллельна: а) АО; б) СО?

19. По условию задачи 18 определите, каким сторонам или диагоналям шестиугольника параллельна прямая, проходящая через середины отрезков МА и МС.

20. Точка М находится вне плоскости правильного пяти­угольника АВСОЕ. Каким сторонам или диагоналям пятиуголь­ника параллельна прямая, проходящая через центры масс тре­угольников МАВ и МАЕ7

21. М и N—центры граней АВВ\А\ и ВСС\В\ куба АВСОА\В\С\0\. Каким ребрам или диагоналям граней куба параллельна прямая МН?

22. АВСОЕР — замкнутая ломаная, не все звенья которой находятся в одной плоскости. Отрезки, соединяющие середины звеньев ВС и АР, СО и ЕР равны и параллельны. Параллельны ли звенья АВ и ОЕ'!

23. АВСТ) — квадрат со стороной 6 см. Точка М удалена от каждой вершины квадрата на 7 см. Определите рас­стояние от середины отрезка МА до середин всех сторон квадрата.

24. Периметр правильного шестиугольника АВСОЕР равен Р. Точка О, находящаяся вне плоскости шестиугольника, соеди­нена отрезком с каждой его вершиной. Из центра масс треуголь­ника ОАВ проведены до пересечения в точках М), Мч, Мз, М^, Мв, Мб с плоскостью шестиугольника прямые, соответственно параллельные ОА, 0В, ОС, 00, ОЕ, ОР. Найдите периметр и площадь шестиугольника М\МчМгМ^МъМ^.

25. Три плоскости попарно пересекаются. Докажите, что линии их пересечения либо пересекаются в одной точке, либо параллельны.

26. АВСО — квадрат со стороной 6 см, прямые АМ и СТ параллельны. На них по одну сторону от квадрата отмечены такие точки М и Т, что МА : ТС ==4:3. На каких расстояниях от вершин квадрата находится точка, в которой прямая МТ пересекает плоскость квадрата?

Параллельность прямой и плоскости

27. Плоскости б и а пересекаются. Докажите, что через каж­дую точку плоскости б можно построить прямую, которая либо параллельна плоскости <т, либо принадлежит плоскости о. Является ли названная прямая единственной прямой, обла­дающей таким свойством?

28. Через точку М, не принадлежащую плоскостям а и (3, можно построить только одну прямую, параллельную этим плоскостям. Докажите, что плоскости а и |3 пересекаются.

29. Докажите, что плоскость, проходящая через середины двух медиан треугольника и пересекающая его плоскость, па­раллельна одной из его сторон.

30. Точка М находится вне плоскости параллелограмма АВСТ). Постройте линию пересечения плоскостей АВМ и СОМ. Параллельна ли она плоскости параллелограмма?

31. По условию задачи 21 докажите, что прямая МN парал­лельна плоскости: а) АВС; б) А\В\С\; в) проходящей через ребра АА\ и СС).

32. АВСОА^В\С\0\ — куб. Докажите, что ребро 00\ парал­лельно плоскости: а) АВВ\; б) ВСС\; в) проходящей через ребра АА\ и СС|; г) проходящей через середины ребер а\в{, АВ, ВС.

Параллельность плоскостей

33. Стороны двух углов соответственно параллельны. Докажите, что либо эти углы равны, либо сумма их градусных мер равна 180°.

34. Стороны параллелограммов АВСТ) и А\В\С\0\ соответ­ственно параллельны. Пересекаются ли в одной точке отрезки АС\, В0\, СА\ и ОВ\7 Если не всегда, то при каком условии они обязательно имеют общую точку?

35. На одной из параллельных плоскостей даны точки А и В, на другой — точки С и О. Середины отрезков АС и ВО не совпадают. Докажите, что прямая, проходящая через эти середины, параллельна названным плоскостям.

36. Точка М находится вне плоскости параллелограмма АВСО. Лежат ли в одной плоскости середины отрезков МА, МВ, МС, МО?

37. Через вершины правильного шестиугольника АВСВЕР проведены параллельные прямые, пересекающие его плоскость. Докажите, что плоскости, проходящий через прямые ВВ\ и РР\, СС\ и ЕЕ\, делает отрезок с концами на АА\ и ВВ \ на три части, одна из которых равна сумме двух других.

38. По условию задачи 87 определите, в каком отношении плоскости, проведенные через АА\ и СС\, АА\ и ВВ\, делят отрезок с концами на ВВ\ и ЕЕ\.

39. АВСВА\В\С\В\ — куб. Докажите, что плоскость, про­ходящая через центры граней, содержащих точку А, парал­лельна плоскости В{СВ\.

40. Три плоскости параллельны. Одна прямая пересекает их в точках А\, А а, Аз; Другая — в точках В\, Вч, В». Докажите, что А\А^ : В\В'г == А.2^.3 : В^Вз.

41. По условию задачи 40 известно, что А\Аг == 4см, В-гВз = 9 см, АчАз == В\В^ Найдите длины отрезков А\Аз

И В1Вз.

Изображение пространственных фигур

42. Две медианы треугольника АВС соответственно парал­лельны двум медианам подобного треугольника ВЕР. Парал­лельны ли третьи яедиаяы атаЕХ треугольников?

43. Изобразите правильный шестиугольник, зная, что данная плоскость делит пополам две не параллельные и не смежные его стороны.

44. Дано изображение квадрата АВСВ и точки М на стороне А.В. Постройте изображение прямой, проходящей через А пер­пендикулярно МО.

45. Дано изображение правильного шестиугольника АВСВЕР. Постройте изображение биссектрис угла: а) АСВ;

б) ВАЕ; в) между АС и ВВ; г) между АС и ВЕ.

46. Чтобы получить изображение правильного восьми­угольника, построили изображение квадрата АВСВ. Отрезки, соединяющие середины противоположных сторон, пересеклись в точке О. Каждый из отрезков, исходящий из точки О, продли­ли на -г- его длины. Полученные точки и вершины квадрата считали изображением вершин правильного восьмиугольника. Верно ли это? Если да, определите точность построения (рис. 54).

47. АВСВ — изображение квадрата. На сколько нужно продлить в обе стороны отрезки, соединяющие середины каж­дых двух соседних сторон квадрата, чтобы полученные точки и вершины квадрата оказались изображением вершин правиль­ного двенадцатиугольника?

48. Дано изображение равнобокой трапеции, в которую можно вписать окружность. Укажите на изображении точки касания сторон трапеции с вписанной окружностью.

49. Дано изображение равнобедренного прямоугольного тре­угольника. Изобразите квадрат, вписанный в этот треугольник так, что две вершины его лежат на гипотенузе, а две — на катетах.

50. Дано изображение равностороннего треугольника. Изобразите квадрат, вписанный в этот треугольник.

51. Дано изображение ромба, у которого одна диагональ равна стороне. Изобразите высоты ромба, проходящие через его центр.

52. Дано изображение прямоугольного треугольника, у ко­торого отношение катетов равно 2 : 3. Постройте изображение серединного перпендикуляра к медиане, проведенной к боль­шему катету.

53. Дано изображение квадрата АВСВ. Постройте изобра­жение равностороннего треугольника АВМ.

54. Дано изображение прямоугольника, у которого отно­шение двух сторон равно 1 : 2. Постройте изображение середин­ного перпендикуляра диагонали этого прямоугольника.

Задачи на построение в пространстве

55. Дан пятиугольник АВСВЕ и проекции трех его вершин на плоскости. Постройте проекции остальных вершин.

56. Дан пятиугольник АВСВЕ и проекции трех точек, принад­лежащих его сторонам, на плоскость 6. Найдите проекцию пяти­угольника на эту плоскость.

57. Дана проекция пятиугольника на плоскость и поло­жение трех его вершин. Найдите положение* остальных вершин.

58. Дана проекция пятиугольника на плоскость б, а также изображения трех точек плоскости пятиугольника, не лежащих на одной прямой, и их проекции на плоскость 6. Постройте изображение пятиугольника.

59. Дана прямая I, пересекающая плоскость б, и точка М, не принадлежащая ни прямой I, ни плоскости 6. Постройте через эту точку ^прямую, которая параллельна плоскости 6 и пересекает прямую I.

60. Даны плоскость 6 и направление лучей света (то есть изображение соответствующей прямой и ее проекции на пло­скость 6). Постройте тень данного квадрата АВСВ на эту плоскость (рис. 55).

61. Даны плоскость 6 и -положение точечного источника света М. Построите тень данного треугольника на эту плоскость.

62. Прямая АВ лежит в плоскости б, а прямая СВ пере­секает эту плоскость; данная точка М лежит вне этой плоскости (рис. 56). Постройте через точку М прямую, которая пересекает АВ и СВ.

63. Дано изображение куба и направление лучей света. Постройте тень куба на плоскость его основания (рис. 57).

64. Постройте тень куба на плоскость его основания, если дано положение точечного источника света.

65. Основания двух кубов находятся в одной плоскости. Прямая пересекает поверхность бдйбго куба в точках А и 3. В Каких Точках о*га 'пересекает поверхность другого куба?

66. Даны два куба, основания которых находятся на плоскос­ти б, и положение точечного источника света. Как построить тень одного куба на поверхности другого?

Перпендикулярные прямые

67. Биссектрисы двух неравных углов равнобедренного треугольника соответственно параллельны двум биссектрисам углов другого равнобедренного треугольника. Параллельны ли основания этих треугольников?

68. Биссектрисы двух внутренних углов треугольника со­ответственно параллельны биссектрисам двух внутренних углов другого треугольника. Параллельны ли соответственные биссектрисы внешних углов этих треугольников?

Перпендикуляр к плоскости

69. Сколько различных плоскостей определяют 4 перпен­дикуляра к одной плоскости?

70. Докажите, что прямые а и b параллельны, если они имеют два общих перпендикуляра.

71. АВСОА\В\С\В\ — куб. Докажите, что любая высота грани АВВ\А \ либо параллельна, либо перпендикулярна

ПЛОСКОСТИ А\В\С1.

72. Докажите, что прямая и плоскость параллельны, если - они имеют общий перпендикуляр.

73. Прямые о и Ъ параллельны, о — перпендикуляр к плоскости 6, Ъ — перпендикуляр к плоскости о. Параллель­ны ли эти плоскости?

^ (? 74. Плоскость 6 не пересекает трапецию АВСВ. Суммы рас­стояний концов от плоскости б у обеих диагоналей одинаковы. Докажите, что средняя линия трапеции параллельна плоско­сти 6.

75. Прямая, проходящая через середины оснований равнобокой трапеции, перпендикулярна плоскости 6. Как распо­ложена относительно этой плоскости средняя линия тра­пеции?

76. Одна из диагоналей ромба находится на перпендикуляре I: плоскости 6. Докажите, что вторая диагональ параллельна плоскости 6 или находится на этой плоскости. ,<$ 77. Расстояния вершин А, В, С параллелограмма АВСВ от плоскости 6 равны 7, 20, 11 см. Найдите расстояние от вер­шины В до этой плоскости.

\ <9 78. Какую фигуру в пространстве образуют все точки, каждая из которых равно удалена от двух данных точек?

79. Какую фигуру образуют все точки, расстояния которых от двух данных параллельных плоскостей относятся, как 1 : З?

80. Какую фигуру образуют все точки, у каждой из которых расстояния от плоскости б и от точки М этой плоскости одинаковы?

^ '^? 81. Точка М находится вне плоскости 6. Одна из сторон треугольника МАВ находится на плоскости 6. Какую фигуру образуют центры масс всех таких треугольников?

82. Прямая I параллельна плоскости 6. Какую фигуру образуют центры всех таких параллелограммов, у каждого из которых одна сторона находится на прямой I, а другая — на плоскости б?

\ АВС и АВМ — равносторонние, их пери­метры равны по 18см. Зная, что СМ== Зт/6 см, укажите на рисунке перпендикуляр к плоскости АВС.

84. Два квадрата, периметры которых по 24 см, имеют общую сторону. Расстояние между центрами квадратов 3-\/2 см. Укажите на рисунке перпендикуляры к плоскостям этих квадратов.

85. Два правильных шестиугольника имеют периметры по 48 см. Отрезок АВ — их общая малая диагональ, рас­стояние между центрами шестиугольников 4-\/2 см. Изобразите шестиугольники и перпендикуляры к их плоскостям.

Перпендикуляр и наклонная

86. Прямая I параллельна плоскости 6. Какую фигуру образуют концы наклонных длины а, проведенных к плоскости 6 из точек прямой /?

^ 87. Из точки М к плоскости, не содержащей эту точку,. проведены наклонные длиной 25 и 40 см. Найдите расстояние от точки М до плоскости, зная, что сумма проекций наклонных на эту плоскость 39 см.

88. Точка М ^ 6, длины наклонных МА и МВ 30 и 25 см.. Определите расстояние от точки М до плоскости 6, зная, что разность проекций наклонных на эту плоскость 11 см. •: ^.89. К плоскости 6 из точки М, не лежащей в этой плоскости, проведены перпендикуляр МО и наклонные МА и МВ. Зная, что 4 АМВ = 60°, 4 АМО == /- ВМО = 45°, найдите градус­ную меру угла между проекциями наклонных.

90. Плоскость проходит через основание трапеции на рас­стоянии 8 см от точки пересечения диагоналей. Найдите от­ношение длин оснований этой трапеции.

91 Вершины треугольника удалены от плоскости 6, не пересекающей его, на 7, 15, 19см. Найдите расстояния от середин медиан треугольника до плоскости 6.

92. Б треугольнике АВС ^ А = /- В = 30°. Найдите на плоскости АВВ точку с наименьшей суммой расстоянии от вершин треугольника.

93. Концы отрезков АВ и СО лежат на плоскостях б и а, причем точки А -а С находятся на одной плоскости, а точки В и О—на другой. АВ = 9 см, СВ = 15 см, АС == 7 см, ВВ =11 см, отрезок АВ перпендикулярен плоскостям 6 и о. Найдите расстояние между серединами отрезков АВ

94. В треугольнике АВС: АВ = 5 см, А.С = 7 см, ^. 4 = 60°. Его проекция на плоскость, параллельную ВС и проходящую через А,— треугольник с углом 120°. Найдите расстояние от стороны ВС до этой плоскости.

95. Проекция прямоугольного треугольника на плоскость, проходящую через вершину прямого угла параллельно гипо­тенузе, есть треугольник с углом в 120° и сторонами этого угла 8 и 9 см. Найдите расстояние от этой плоскости до гипо­тенузы.

96. Плоскость параллельна наибольшей средней линии пря­моугольного треугольника АВС. Проекции сторон треугольника на эту плоскость 11, 12, 19 см. Найдите площадь треугольника

АВС. .„п О 97. Через вершину А прямоугольного треугольника А-ас

проходит плоскость 6, которая параллельна гипотенузе ВС и удалена от нее на 24 см. Зная, что ВС = 50 см, а проекции катетов на плоскость 6 относятся , как 9 : 16, найдите площадь

треугольника АВС.

98. В окружность радиуса L вписан равносторонний треугольник АВС, точка M находится вне его плоскости. Докажите,

что MA2 + МБ2 + МС2 == ^(й2 + МО2), где О — центр окружности.

99. МО — перпендикуляр к плоскости, проходящей через

ее точку O. MA = 10 см, MB = 16 см, ^OAM=^2OBM.

Найдите MO.

100. Из точки M, находящейся вне плоскости б, проведены

к этой плоскости перпендикуляр MO и наклонные MA и MB.

Зная, что АО = 33 см, ВО = 8 см, /- АМО = -|- ^ ВМО, найдите МО.

101 Из точки М проведены к плоскости 6 перпендикуляр

МО и наклонные МА, МВ, МС. Проекции МВ и МС меньше проекции МА на 33 и 48см, ^ОАМ : А.ОВМ : ^ОСМ == =1:2:3. Найдите МО.

Теорема о трех перпендикулярах

102. Какую фигуру образуют все точки, равноудаленные от

прямых, содержащих стороны данного треугольника?

103. Какую фигуру образуют все точки, равноудаленные

от трех прямых, находящихся в плоскости б?

104. Катеты прямоугольного треугольника АВС 12 и 16 см. Точка М удалена от каждой из прямых АВ, АС, ВС на 13 см. Найдите ее расстояние от плоскости АВС.

105. Точка М удалена от вершины и сторон прямого угла соответственно на 16, 12, 11 см. Найдите ее расстояние от плоскости прямого угла.

106. На плоскости 6 дан угол в 60°. Точка М удалена от его вершимы на 5. см, а от сторон на 4 и 3 см. Найдите расстоя­ние от точки М до плоскости названного угла.

107. Основания прямоугольной трапеции 10 и 15 см. Точка М удалена от каждой стороны трапеции на 10 см. Найдите расстояние от точки М до плоскости трапеции.

108. На плоскости 6 отмечены точки А и В, на. плоскости а — точки С и В так, что АВ == 13 см, СО = 14 см, АС == 8 см, ВВ ==17 см, причем прямая АС перпендикулярна плоскостям 6 и ст. Найдите расстояние между АС и ВВ.

109. Если существует точка, равноудаленная от всех сторон | параллелограмма, то этот параллелограмм — ромб. Докажите.

Перпендикулярные плоскости

110. Какую фигуру образуют все прямые, которые проходят через вершину данного угла (меньше развернутого) и образуют ^ с его сторонами равные углы?

111. Какую фигуру образуют все точки, равноудаленные

от двух данных пересекающихся прямых?

112. Прямоугольник АВСВ, стороны которого 3 и 4 см, перегнули по диагонали АС так, что треугольники АВС и АВС оказались в перпендикулярных плоскостях. Определите рас­стояние между точками В и В после перегиба.

113. Плоскости » и р перпендикулярны плоскости 6. Докажите, что линия пересечения плоскостей а и р перпендикулярна плоскости 6.

114. Концы отрезка АВ лежат на двух данных взаимно периендикуляриых плоскостях. Опущены перпендикуляры АА 1 и бв[ на линию пересечения плоскостей. Здая, что АВ = | = 21 см, АА\ •== 11 см, ВВд == 16 см, найдите а\в[. I > ()

115. Квадраты АВСВ и АВС\В\ имеют площади по 32 см2. Зная, что расстояние между СВ и С\В\ равно 8 см, докажите, что плоскости квадратов взаимно перпендикулярны.

116. Перпендикулярные плоскости пересекаются по прямой I. Отрезок АВ имеет концы на этих плоскостях и образует со своими проекциями углы в 30° и 45е. Найдите угол между направлениями I и АВ.

117. АВСО квадрат, плоскость МАО перпендикулярна плоскости квадрата, ММ \\ АО На АВ дана точка Т. Как по­строить через эту точку прямую, образующую равные углы с АВ и Мт

118. Периметры равносторонних треугольников АВС и АВО равны по 24 см, плоскости треугольников взаимно перпенди­кулярны. Постройте общий перпендикуляр медиан АО и ОМ этих треугольников и найдите его длину.

119. Плоскости квадрата АВСО и равностороннего тре­угольника АВМ взаимно перпендикулярны, АВ == а. Постройте общий перпендикуляр прямой АС и медианы МО треугольника и определите длину этого перпендикуляра.

Прямоугольные координаты в пространстве

120. Три вершины ромба находятся в точках (8; 9; 10), (3, 3" 2), (8; 7, 1). Найдите координаты четвертой вершины.

121. Три вершины параллелограмма находятся в точках (3; 1- 8), (4; 7; 1), (3; 5, 8). Найдите координаты четвертой вершины.

122. Середины сторон треугольника находятся в точках ( 2; 5; 1), (1, 3; 4), (2 0; 4). Найдите координаты вершин треугольника.

123. Координаты вершин А, С, Е правильного шестиуголь­ника АВСОЕР: (—3; 7; 5), (7; 2; 1), (2; 3; 6). Найдите коорди­наты остальных вершин и центра шестиугольника.

124. Суммы аппликат противоположных вершин трапеции равны. Докажите, что средняя линия трапеции параллельна плоскости ху или находится в этой плоскости.

125. Лежат ли на одной прямой точки -А(5; —1; 4), В(4;

3; 1), С(3; 7; —2)?

126. Докажите, что отрезки АВ и СО, концы которых на­ходятся в точках А(»; —1; 4), В(2; 8; 7), С(5; 0; 1), 0(8; 6; 13), пересекаются и при этом делятся в отношении 1:2.

127. На ребрах АА^,В\С^ СО куба АВСОА\В\С\0\ найдите по точке, чтобы сумма квадратов расстояний между этими точками была минимальной.

128. Через точку М(1; 5; 3) проведена прямая, которая параллельна плоскости ху и пересекает отрезок с концами -А(4; 2; 1) и В(7; 11; 7). Определите координаты точки пере­сечения.

129. Найдите точку с наименьшей суммой квадратов рас­стояний от точек с координатами (1; 2; 4), (4; 5; 1), (7; 2; 1).

Векторы в пространстве

130. АВСО — прямоугольник, точка М находится вне его плоскости. Докажите, что МА2 + МС2 •==- МВ2 + МО2

131. Точка М находится вне плоскости треугольника АВС, центр масс которого — Т. Точка К делит отрезок МТ так, что МК == 3 КТ. Докажите, что АК + ВК + СК + МК = 0.

132. Если направление АВ образует с направлениями СО, СЕ, ОЕ равные углы, то прямая АВ перпендикулярна плоскости СОЕ. Докажите.

133. Верно ли, что, если М. — центр правильного много­угольника А\АчА^... Ап, то МА\ + МАг + МАз +•••+ МАп == = О?

134. Найдите точку с наименьшей возможной суммой квадратов расстояний от всех вершин данного правильного многоугольника.

135. Точка М отстоит от центра куба АВСОА \В\С\0\ на 7 см. Найдите длину вектора МА + МВ + МС 4- МО + МА ] + + МВ1 + МС\ + М0\. ___

136. По условию задачи 135 найдите длину вектора МР\ +

+ МР2 +-МРз + М?4 + М?5 + МРб, ГДе ?1, ?2, рз, Л, Р^

Ре — центры граней куба.

137. Через центр масс Т треугольника АВС проведена. прямая, на ней отмечены такие точки А\, В\, С\, что аа[ || II ВВ) || СС\. Докажите, что: а) ла) + ВВ1 + СС\ == 0;

б) ТА^ + ТВ, + ТС\ == 0.

138. Докажите, что прямую, проходящую через точки А и В, можно определить, как совокупность точек М, удовле­творяющих условию АМ = р АВ, где —оо<:р<:оо. Какое число р соответствует точке А? Какое число р соответствует точке В? Возможно ли, исходя из векторного задания, получить координатное задание прямой?

139. Докажите, что плоскость, заданную точками А, В, С» можно определить как совокупность точек М, удовлетво­ряющих условию АМ == р АВ + 0. АС, где — оо < р < оо, — оо <: $ <: оо.

Преобразование фигур в пространстве

140. Точки А и В находятся по одну сторону плоскости 6, на которую спроектированы ортогонально. Найдите на этой плоскости точку с наименьшей возможной суммой расстояний от А и В.

141. Точки М и N находятся на двух боковых гранях куба. Найдите на плоскости основания куба точку с минимальной суммой расстояний от М и N.

142. Точки Л и В находятся по разные стороны плоскости 6, на которую они спроектированы ортогонально. Найдите на этой плоскости точку с наибольшей возможной разностью расстояний от точек А и В.

143. АВСВА\В1С\В\—куб. Точка М находится на грани СВВ\С\, а точка N — на луче А\ А вне куба. Найдите на плос­кости АВС точку с наибольшей возможной разностью рас­стояний от точек М и N.

144. О — центр грани ВСС\В1 куба АВСВА1В\С\В\. Найдите на плоскости АВС все точки, равноудаленные от точек О и А\.

145. Даны точки А(6; О; О), 5(0; 4; 0), С(5; 1; 3). Постройте отрезок с серединой С и концами на прямой АВ и на плоско­сти хг.

146. Вершины треугольника находятся в точках (2; 3; 4), (5; 1; 8), (8; 10; 3). В результате параллельного переноса верши­на наибольшего угла переместилась в центр описанной окруж­ности. Найдите новые координаты вершин треугольника.

147. Выполните параллельный перенос куба АВСВА\В\С\В\, чтобы его вершина А переместилась в центр грани АВСВ.

148. Выполните параллельный перенос куба авсва\в{с\в\, чтобы центр грани АВВ\А\ переместился на середину отрез­ка АВ.

149. Известно положение вершин А(1; —3; 4), В(3; 1; —1), С(4; 0; 2) параллелограмма АВСВ. Построена фигура, сим­метричная параллелограмму относительно начала координат. Определите, в какую точку переместилась точка В.

Углы между прямыми

150. Найдите величины углов между диагоналями куба.

151. Дан куб АВСВА\В\С\В\. Постройте прямую, которая образует углы по 60° с прямыми ВС и А \В\.

152. М — середина ребра СС\ куба АВСВА\В\С\В\. Найдите угол между А\М и прямой, которая проходит через точку В и середину отрезка А\М.

153. М — центр грани ВСС\В\ куба. Найдите угол между прямыми А\М и ОМ.

154. Найдите на диагонали ВВ\ куба АВСВА\В\С\В\ такую точку Р, чтобы прямые АР и СР пересекались под прямым углом.

155. Найдите угол между направлениями ва[ и В\В\, если отрезки ВА\ и В\В\ — диагонали соответствующих граней куба.

156. По условию задачи 152 найдите угол между направле­ниями А\М и ВВ\.

Угол между прямой и плоскостью

157. Плоскость, проходящая через сторону квадрата, обра­зует с его диагональю угол в 30°. Найдите угол между этой плоскостью и стороной квадрата, которую она пересекает.

158. АВ — высота прямоугольного треугольника АВС. Плоскость, проходящая через гипотенузу, образует с катетами

углы в 30° и 45°. Найдите величину угла между этой плос­костью и АВ.

159. АВСВ — квадрат, точка М находится вне его плоско­сти. Углы между прямыми МА, МВ, МС и плоскостью квадрата 45°, 60°, 45°. Найдите угол между прямой МВ и плоскостью АВС.

160. Прямая I параллельна плоскости 6. Найдите на этой плоскости все такие точки М, что прямая, проходящая через М, пересекает б и образует равные углы с I и с плоскостью 6.

161. Прямая проходит черве вершину прямого угла и обра­зует с его сторонами углы в 45° и 60°. Какой угол она образует с плоскостью прямого угла?

162. Через сторону АВ равностороннего треугольника АВС проходит плоскость, образующая с прямой АС угол в 30°. Найдите углы между этой плоскостью и высотами тре­угольника.

168. На плоскости ху дана окружность {х — 4)2 -|-+ (у — З)2 = 25. Точка А имеет координаты (0; 0; 5). Найдите на окружности такую точку В, чтобы угол между АВ и ху был наименьшим возможным.

164. АВСВ — квадрат, точка М находится вне его плоскости. Прямые ВС т АС образуют с плоскостью АВМ углы, градусные меры которых разнятся на и. Определите величины этих углов.

166. Из точки М, находящейся вне плоскости 6, проведены к »той плоскости наклонные МА == 23 см и МВ === 9 см. Зная, что углы между наклонными и плоскостью б относятся, как 1 : 3, определите расстояние от точки М до плоскости б.

1@6. Из точки М, удаленной от плоскости 6 на 24 см, по­строены две наклонные, длины которых относятся, как 5 : 8. Углы между наклонными и плоскостью относятся, как 1 : 2. Найдите длины наклонных.

167. Из точки М ^ б проведены к плоскости наклонные МА и МВ, проекции которых на плоскость 11 и 37 см. Зная, что углы между наклонными « плоскостью относятся, как 3:1, найдите расстояние от М до 6.

168. МА и МВ - наклонные, образующие с плоскостью 5, содержащей точки А и В, углы, один из которых в 4 раза больше другого. Зная, что проекции наклонных на эту пло­скость 600 и 119 см, найдите расстояние от точки М до пло­скости &

189. Из точки М к плоскости 8 проведены наклонные МА и МВ дджнон 79' и 25 ем. Углы между наклонными и плоскостью отяовявтся, как 1 : 5. Найдите расстояние от точки М до пло­скости 6.

17<^. В точке О к плоскости 6 восстановлен перпендикуляр. На иеж отаютенм точки А, В, С так, что АО — ВО == 144 см, АО — СО == 26 см. Зная, что углы между наклонными МА, МВ, МС и плоскостью относятся, как 1:4:3, найдите МО.

Угол между плоскостями

171. Какую фигуру образуют все точки, у каждой из ко­торых сумма расстояний от двух данных пересекающихся плоскостей равна та?

172. Какую фигуру образуют все точки, у каждой из ко­торых разность расстояний от двух данных пересекающихся плоскостей равна т?

173. Какую фигуру образуют все точки, у каждой из кото­рых расстояния от пересекающихся плоскостей а и |3 относятся, как т : га?

174. АВСТ) — квадрат, треугольники МАВ и МВС — равносторонние. Найдите угол между плоскостями треуголь­ников.

175. Длины сторон трапеции 19, 19, 19, 45см. Плоскость проходит через основание трапеции под углом в 30° к пло­скости трапеции. Найдите расстояние от этой плоскости до дру­гого основания трапеции.

176. АВСВ — квадрат. Точка М удалена от каждой стороны квадрата на АВ. Найдите угол между плоскостью квадрата и плоскостью МВС.

177. Точка М удалена от каждой стороны равностороннего треугольника АВС на радиус окружности, описанной около треугольника. Найдите угол между плоскостями АВС и МАВ.

178. Точка М находится внутри двугранного угла а и удале­на от его граней на а и Ь. Найдите ее расстояние от ребра дву­гранного угла, если а, а, Ь соответственно равны: а) 120°, 22см, 23см; 6)60°, 2см, 11см; в) 30°, 2см, 3 уз см;

г) 150°,^11 см; 8 уз см; д) 45°, ,10см, 7-^2 см; е) 135°, 8 см, 7у2 см.

179. Точка М находится внутри двугранного угла в 45° и удалена от его ребра на 10 см. Найдите ее расстояния от граней двугранного угла, зная, что эти расстояния относятся, как 1 : 3 У2.

180. Сторона равностороннего треугольника 6 см. Найдите расстояние от точки М до плоскости АВС, если плоскости МАВ, МАС, МВС образуют с ней углы: а) 90°, 30°, 60°; б) 60°, 60°, 30°.

Площадь ортогональной проекции

181. Плоскости а и р пересекаются. Треугольник АВС находится на плоскости а, его ортогональная проекция на плоскость р — Д А\В\С\. Ортогональная проекция на плоскость а треугольника А[В[С1 — Д А уВъС-г. Найдите угол между пло­скостями а и р, если площадь треугольника АчВ'гСч меньше площади треугольника АВС: а) вдвое; б) на 25 %.

182. Стороны треугольника АВС 25, 29, 36 см, его ортого­нальная проекция на плоскость 6 — А А\В\С\. Ортогональная проекция треугольника а\в}с\ на плоскость АВС— ^А^В^Сч,

стороны которого 12, 17, 25см. Найдите угол между плоско­стями АВС и 6.

183. Докажите, что при параллельном проектировании двух многоугольников, лежащих в одной плоскости, на одну и ту же плоскость площади проекций относятся, как площади многоугольников.

184. На плоскости 6 находятся квадрат и треугольник. Периметр квадрата 32 см, стороны треугольника 13, 37, 40 см. Проекция квадрата на плоскость б — прямоугольник со сто­ронами 5 и 8 см. Определите площадь проекции треугольника на плоскость 6.

185. Проекция квадрата АВСВ на плоскость 6 — прямо­угольник АВЕР, причем ортогональная проекция точки Р делит отрезок АВ в отношении 1 : 3, считая от А. Найдите угол между плоскостями квадрата и прямоугольника.

186. Ортогональная проекция квадрата на плоскость — четырехугольник со сторонами 2 и 4 см и диагональю 5 см. Определите площадь квадрата и угол между плоскостью квад­рата и плоскостью проекции.

Уравнение плоскости

187. Напишите уравнение плоскости, которая проходит че­рез точку М(1; 3; 8) и отсекает на координатных осях равные отрезки.

188. Напишите уравнение плоскости, которая пересекает оси Ох, Оу, Ог в таких точках А, В, С, что АВ = 10, АС ==. 17, ВС == 3 У29.

189. Напишите уравнение плоскости, которая проходит че­рез точки (0; 2; 5), (1; 0; 3), (1; 4; 0).

| 190. Напишите уравнение плоскости, которая пересекает две координатные плоскости по прямым Зх — 2г — 6 == О и Зу + 5г -^- 15 == 0.

191. Напишите уравнение плоскости, которая параллельна оси Ог и проходит через точки А(1; 5; 3) и 5(4; 2; 1).

192. Найдите угол между плоскостями ху и —+ ^—+

_1_ г _ 1 + 12-- 1- ^

ОДИННАДЦАТЫЙ КЛАСС

Многогранник

1. На сколько частей делят пространство плоскости всех граней: а) треугольной призмы; б) куба; в) треугольной пира­миды?

2. Изобразите многогранник с общим числом ребер: а) 11;

б) 13.

3. Докажите, что никакой многогранник не имеет ровно 7 ребер.

4. Изобразите многогранник, отличный от пирамиды, у ко­торого вершин столько же, сколько граней.

5. Даны 5 точек, никакие 4 из которых не лежат в одной плоскости. Определяют ли данные точки единственный много­гранник с вершинами в этих точках?

6. Может ли существовать многогранник с нечетным числом граней, причем все его грани — четырехугольники?

Призма

7. Иногда призму определяют как многогранник, у которого две грани — многоугольники, лежащие в параллельных пло­скостях, а все остальные грани — параллелограммы. Приведите примеры, свидетельствующие о неточности такого определения.

8. Изобразите призму, у которой вершин столько же, сколь­ко диагоналей.

9. Может ли неправильная призма иметь 4 плоскости сим­метрии? Если да, изобразите призму, отвечающую этому ус­ловию.

10. Ребро куба 2 см. Паук находится в центра грани куба. Какой наименьший путь по поверхности куба придется проделать пауку, чтобы попасть х вершину параллельной грани? __

11. АВСРЕРА\В\С1Р\ЕлР\ — призма. Докажите, что АВ\ + + ВС) + СД == А?1 + РЁ1 + ЯА.

12. Диагональ боковой грани правильной й®стиугольной призмы образует с плоскостью основания угол, который на 15° больше угла между малой диагональю призмы и пло­скостью основания. Найдите эти углы.

18. А и В — середины двух несмежных боковых ребер правильной шестиугольной призмы. Найдите на плоскости нижнего основания призмы вое такие точки, что прямые МА и МВ образуют равные углы с плоскостью нижнего основания приемы.

14. Верно ли, что площадь боковой грани треуголь­ной призмы меньше суммы площадей остальных боковых граней?

15. Две боковые грани треугольной призмы взаимно перпен­дикулярны. Докажите, что сумма квадратов площадей этих граней равна квадрату площади третьей боковой грани.

16. Три диагонали четырехугольной приемы имеют общую точку О. Докажите, что и четвертая диагональ приемы про­ходит через точку О.

17. Стороны основания прямой треугольной призмы от­носятся, как 5 : 9 : 10. Диагонали двух меньших боковых гра­ней 26 и 30 см. Найдите площадь третьей боковой грани.

18. Пьедестал имеет форму правильной призмы. Проходя мимо него, можно видеть то 3, то 4 боковые грани. Определите число боковых граней пьедестала.

19. Основание призмы — прямоугольный треугольник АВС, две боковые грани (АВВ\А\ и АСС\А\) — квадраты. Найдите ^ В^АСх.

20. Найдите точку с наименьшей суммой квадратов рас­стояний от всех вершин данной правильной треугольной призмы.

Площадь поверхности призмы

21. Докажите, что площадь боковой грани любой призмы менее половины площади боковой поверхности призмы.

22. Диагональ боковой грани правильной шестиугольной призмы равна большой диагонали основания. Найдите отноше­ние площадей боковой и полной поверхности призмы.

23. Расстояния боковых ребер треугольной призмы от па­раллельных боковых граней равны 12, 15, 20см; меньшая боковая грань имеет форму квадрата и перпендикулярна плоскости основания. Найдите площадь поверхности призмы.

24. Площадь основания и площади боковых граней прямой треугольной призмы соответственно равны 480, 312, 200, 128 см2. Найдите высоту призмы.

25. Основаш1е прямой призмы — ромб. Зная, что ее высота и диагонали 40, 41, 50 ем, найдите площадь боковой поверхно­сти призмы.

26. Основание прямой шестиугольной призмы вписано в окружность, диаметр которой равен боковому ребру призмы. Три стороны основания, взятые через одну, имеют длины по 5 см, остальные стороны до 3 см. Найдите площадь поверхности призмы.

27. Высота правильной шестиугольной призмы Н. Диагонали двух соседних боковых граней, проведенные иа одной вершины, взаимно перпендикулярны. Найдите площадь боковой поверх­ности призмы.

28. Какую наибольшую площадь боковой поверхности может иметь правильная п- угольная призма, у которой диаго­наль боковой грани и?

29. Основание прямой призмы — четырехугольник, вписанный в окружность радиуса 25 см. Площади боковых граней относятся, как 7 : 15 : 20 : 24, длина диагонали наибольшей боковой грани 52 см. Вычислите площадь поверхности призмы.

Сечение призмы плоскостью

30. Докажите, что сечение правильной четырехугольной призмы плоскостью, проходящей через концы трех ребер, исходящих из одной вершины, является остроугольным тре­угольником.

31. Через боковое ребро треугольной призмы проведены два сечения: одно перпендикулярно противолежащей боковой грани, другое — через ее центр. Зная, что плоскости сечений делят угол между двумя боковыми гранями на три равные части, найдите величины двугранных углов между боковыми гранями призмы.

32. Постройте сечение куба плоскостью, не параллельной ни одной грани куба, чтобы оно имело форму квадрата.

33. Ребро куба о. Построено сечение, имеющее форму пра­вильного /г-угольника. Для каких п и как именно можно по­строить такие сечения? Вычислите его площадь для каждого

ВОЗМОЖНОГО 71.

34. Дан куб АВСТ>А\В\С\1)\. Постройте сечение куба плоскостью, проходящей через середины ребер АВ и ВС парал­лельно диагонали В^\.

35. Стороны основания треугольной призмы 25, 39, 56 см. Сечение, проходящее через центр наибольшей боковой грани и боковое ребро, имеет форму квадрата. Найдите площадь по­верхности призмы.

36. В правильной четырехугольной призме сторона осно­вания 2 см, высота 4 см. Найдите площадь сечения, которое проходит через середины двух смежных сторон основания и центр призмы (рис. 58).

37. Длина каждого ребра правильной шестиугольной приз­мы АВС^ЕРА\В\С\^\Е\1:^'\ 4см. Найдите площадь сечения, ко­торое проходит через вершины А и С параллельно диагонали призмы ВЕ^.

38. В правильной четырехугольной призме АВСВА^В\С\В\ боковая грань и сечение АВ\С равновелики. Найдите угол между плоскостью названного сечения и боковым ребром призмы.

39. Плоскость пересекает боковые ребра прямой треуголь­ной призмы АВСА\В\С\ так, что сечением оказался равно­сторонний треугольник КЬМ периметра 36 см. Известно, что АК = 16 см, ВЬ= 11 см, СМ = 5 см. Найдите угол между медианой КВ сечения и плоскостью основания (рис. 59).

40. В правильной четырехугольной призме построены два параллельных сечения: одно через середины двух смежных сторон основания и центр призмы, другое — через диагональ основания (рис. 60). Найдите отношение площадей сечений.

Параллелепипед

41. Сечение призмы плоскостью, пересекающей все боковые ребра — параллелограмм. Докажите, что эта призма — парал­лелепипед.

42. Боковое ребро прямоугольного параллелепипеда I, диагональ его вдвое меньше периметра основания. Определите площадь основания параллелепипеда.

84

43. Докажите, что в прямоугольном параллелепипеде квад­рат площади сечения с вершинами в концах ребер, исходящих из одной вершины, в 8 раз меньше суммы квадратов площадей всех граней параллелепипеда.

44. Докажите, что расстояние между скрещивающимися диагоналями двух смежных граней куба втрое меньше диаго­нали куба.

45. Докажите, что сумма квадратов диагоналей паралле­лепипеда равна сумме квадратов его ребер.

46. Расстояния от центра параллелепипеда до его вершин 18, 15, 11, 10 см. Зная, что длины трех ребер (в сантиметрах) выражаются последовательными целыми числами, определите периметры граней параллелепипеда.

47. Боковое ребро параллелепипеда 10 см, периметр осно­вания 56 см. Расстояния от вершин одного основания до центра другого основания 18, 17, 10, 9 см. Найдите стороны основания.

48. Диагонали параллелепипеда АВСОА \В \С \В\ пересекают­ся в точке О. Периметры треугольников ОАА\, ОАВ и ОАО рав­ны 36, 37, 29 см, АЛ, == 17 см, АВ = 11 см, АО = 6 см. Найдите диагонали параллелепипеда.

49. Боковое ребро параллелепипеда 3 см, стороны основа­ния 10 и 11 см. Зная, что длины диагоналей (в сантиметрах) выражены последовательными четными числами, найдите пло­щади диагональных сечений.

50. Длины ребер параллелепипеда 9, 13, 14 см, длины его диагоналей (в сантиметрах) выражаются последовательными четными числами. Найдите расстояния от центра параллелепи­педа до вершин.

51. Площадь поверхности прямоугольного параллелепипеда 192 см2. Если бы каждое измерение его было на 1 см больше, площадь поверхности равнялась бы 274 см2. Определите длину диагонали параллелепипеда.

52. Докажите, что сечение параллелепипеда плоскостью не может быть правильным пятиугольником.

53. Какую наибольшую площадь поверхности может иметь прямоугольный параллелепипед, у которого длина диаго­нали и?

54. Какую наибольшую площадь поверхности может иметь параллелепипед, у которого сумма длин всех ребер 48 см?

Пирамиды

55. Могут ли середины всех высот треугольной пирамиды находиться в одной плоскости?

56. Сумма плоских углов при всех вершинах пятиугольной призмы равна сумме плоских углов при всех вершинах пира­миды. Определите число ребер этой пирамиды.

57. Плоские углы при каждой вершине пирамиды равны между собой. Определите форму основания пирамиды.

58. Какова бы ни была треугольная пирамида, можно по­строить треугольник, стороны которого равны суммам скре­щивающихся ребер этой пирамиды. Докажите.

59. Докажите, что отрезки, соединяющие середины скре­щивающихся ребер треугольной пирамиды, пересекаются в одной точке.

60. Докажите, что сумма квадратов отрезков, которые сое­диняют середины скрещивающихся ребер треугольной пира­миды, в 4 раза меньше суммы квадратов ребер этой пирамиды.

61. Могут ли все грани пирамиды оказаться прямоуголь­ными треугольниками?

62. Плоские углы при вершине пирамиды — прямые. Дока­жите, что сумма квадратов площадей боковых граней равна квадрату площади основания пирамиды.

63. Основание пирамиды — параллелограмм, стороны кото­рого 16 и 22 см. Расстояние от вершины пирамиды до центра основания 4 см. Зная, что длины боковых ребер (в сантиметрах) выражаются последовательными нечетными числами, найдите длины боковых ребер пирамиды.

64. Два боковых ребра пирамиды 13 и 14 см, угол между ними 60°, а между их проекциями 120°. Найдите высоту пирамида.

65. Основание пирамиды — параллелограмм, периметр ко­торого 48 см. Центр основания удален от вершины пирамиды на 7,5 см, боковые ребра пирамиды 9, 11, 12, 13 см. Найдите стороны основания.

66. Может ли развертка полной поверхности пирамиды ока­заться: а) равносторонним треугольником; б) квадратом;

в) правильным пятиугольником; г) правильным шестиуголь­ником; д) трапецией?

6Т. Докажите, что центры всех граней правильной призмы являются вершинами двух равных правильных пирамид с общим основанием.

6в. Докажите, что только при п == 3 развертка полной по­верхности

п-угольной пирамиды может оказаться выпуклым многоугольником.

©9. Если плоские углы при вершине пирамиды — прямые, то высота пирамиды проходит через точку пересечения высот основания. Докажите.

Т®. Основание пирамиды — квадрат. Двугранные углы при основании пирамиды относятся, как 1:2:5:2. Найдите вели­чины этих углов.

71. Боковое ребро правильной треугольной пирамиды МАВС имеет длину I и образует со стороной основания, которую пересекает, угол в 75°. Паук начал ползти из вершины А и, по­бывав на всех боковых гранях пирамиды, вернулся в ту же точ­ку (рис. 61). Определите наименьшую возможную длину пути паука.

72. Сторона основания правильной шестиугольной пира­миды МАВСВЕР равна а, угол между боковым ребром и стороной основания, которую оно пересекает, 80°. Паук начал ползти по поверхности пирамиды из точки А и, побывав на всех боковых гранях, вернулся в точку А. Определите наименьшую возможную длину пути паука.

73. Из каждой вершины основания правильной четырех­угольной пирамиды, площадь основания которой равна О, опущены перпендикуляры на плоскости граней, не содержащих этих вершин. Точки пересечения этих перпендикуляров — К, Ь, М, N (рис. 62). Докажите, что эти точки лежат в одной плоско­сти, и найдите площадь четырехугольника К^МN.

74. Если боковые ребра треугольной пирамиды попарно взаимно перпендикулярны и имеют длины а, Ъ, с, то высота пирамиды Н связана с ними соотношением: Н 2 + с~2. Докажите.

75. Если суммы квадратов скрещивающихся ребер треуголь­ной пирамиды равны, то высоты пирамиды пересекаются в од­ной точке Г Докажите

.

Площадь поверхности пирамидах

76. Боковые ребра треугольной пирамиды взаимно перпен­дикулярны, их длины 2, 4, 16 см. Найдите площадь поверх­ности пирамиды.

77. Площадь основания треугольной пирамиды равна 56 см2. Боковые ребра взаимно перпендикулярны, их длины состав­ляют арифметическую прогрессию с разностью 4 см. Найдите площадь боковой поверхности пирамиды.

78. Какую наибольшую площадь поверхности может иметь треугольная пирамида, у которой 5 ребер имеют длину а?

79. Двугранный угол между смежными боковыми гра­нями правильной четырехугольной пирамиды 120°, площадь основания О. Определите площадь боковой поверхности пи­рамиды.

80. В правильной шестиугольной пирамиде площадь каж­дого диагонального сечения равна О. Найдите площадь боковой и площадь полной поверхности пирамиды.

81. Правильная пирамида и правильная призма имеют общие основание и высоту. Может ли площадь боковой поверх­ности призмы быть меньше площади боковой поверхности пира­миды? Если да,' то при каком условии?

82. Может ли площадь одной боковой грани пирамиды быть равной сумме площадей остальных боковых граней? Мо­жет ли она превысить названную сумму площадей? Подкрепите свои соображения примерами.

83. Площадь боковой поверхности правильной четырех­угольной пирамиды равна сумме площадей основания и диаго­нальных сечений. Найдите величину плоского угла при вер­шине пирамиды.

84. Из центра основания О правильной четырехугольной пирамиды, площадь поверхности которой О, проведены парал­лельно боковым ребрам пирамиды прямые ОА\, ОВ\, ОС\, ОВ\ (рис. 63). Найдите площадь поверхности пирамиды ОА1В\С\В\.

Сечение пирамиды

85. Плоский угол при вершине правильной пирамиды — прямой. Как построить сечение пирамиды плоскостью, прохо­дящей через вершину пирамиды, чтобы оно было равносторон­ним треугольником?

86. Сторона основания правильной треугольной пирамиды 20 см, боковое ребро 30 см. Постройте сечение, имеющее форму квадрата, и определите его площадь.

87. Площадь малого осевого сечения правильной четырех­угольной пирамиды О. Найдите площадь сечения, которое пер­пендикулярно стороне основания и делит эту сторону в отно­шении 1:5.

88. В правильной шестиугольной пирамиде сторона основа­ния 10 см, а боковое ребро 13 см. Найдите площадь сечения, проходящего через центр основания параллельно боковой грани.

89. Сторона основания правильной четырехугольной пира­миды МАВСО равна а, боковое ребро I. Постройте сечение через середины сторон основания АВ и ВС параллельно ребру МВ и определите площадь сечения.

90. Сторона основания правильной четырехугольной пира­миды 12 см, а боковое ребро 11 см. Найдите площадь сечения, проходящего через сторону основания перпендикулярно про­тиволежащей боковой грани.

91. Периметр основания правильной треугольной пирамиды 45 см, боковое ребро 14 см. Найдите площадь сечения, кото­рое проходит через середину медианы основания перпенди­кулярно этой медиане.

92. Через сторону основания правильной четырехугольной пирамиды и среднюю линию параллельной боковой грани про-

о ведено сечение. Докажите, что его площадь больше — площади

основания.

93. Через сторону основания правильной шестиугольной пирамиды и среднюю линию параллельной боковой грани про-

ведена плоскость. Докажите, что площадь сечения больше —

площади основания.

94. Основание пирамиды МАВСВ — ромб с диагоналями АС = 24 см, ВО == 21см. Боковое ребро МА == 18 см перпен­дикулярно плоскости основания. Найдите площадь сечения, которое проходит через вершину А и середину ребра МС па­раллельно диагонали ВО основания (рис. 64)..

Параллельные сечения пирамиды

95. Построены два сечения пирамиды плоскостями, перпен­дикулярными боковому ребру. Относятся ли площади этих сечений как квадраты их расстояний от вершины пирамиды?

96. Площадь основания пирамиды 128 см2. Площади двух сечений, параллельных основанию, 18 и 50 см2, расстояние между плоскостями сечений 12 см. Найдите высоту пирамиды.

97. Боковое ребро и высота правильной четырехугольной пирамиды 35 и 28 см. В пирамиду вписан куб так, что его 4 вер­шины лежат на основании пирамиды, а 4 — на апофемах пирамиды. Найдите ребро куба.

98. Основание пирамиды — прямоугольный треугольник с катетами 3 и 4 см. Высота пирамиды Н == 24 см находится внутри пирамиды. В пирамиду вписан куб так, что 4 вершины его лежат на основании пирамиды, а 4 — на боковых гранях, причем боковые грани куба параллельны катетам основания (рис. 65). Найдите ребро куба.

Усеченная пирамида

99. Докажите, что диагонали правильной четырехугольной усеченной пирамиды пересекаются в одной точке.

100. Площади оснований усеченной пирамиды 75 и 147 см2. Найдите площадь сечения, проходящего через середины всех боковых ребер.

101. Диагональ правильной четырехугольной усеченной пи­рамиды имеет длину 15 см и делит отрезок, соединяющий центры оснований, на части в 4 и 5 см. Найдите площади осно­ваний усечённой пирамиды.

102. Отрезок 00\ = 27 см, соединяющий центры оснований правильной четырехугольной усеченной пирамиды, разделил ее диагональ на части в 20 и 25 см. Найдите площади оснований.

103. Сторона меньшего основания, боковое ребро и сторона большего основания правильной четырехугольной усеченной пирамиды составляют арифметическую прогрессию с разностью 4 см. Высота усеченной пирамиды 7 см. Найдите площади оснований.

104. В правильной шестиугольной усеченной пирамиде отре­зок, соединяющий середину малой диагонали большего осно­вания с центром другого основания, параллелен одному из боко­вых ребер. Как относятся площади оснований усеченной пирамиды?

105. В правильной треугольной усеченной пирамиде сторо­ны оснований 2 и 5 дм, высота 1 дм. Найдите площадь сечения, проходящего через сторону меньшего основания параллельно боковому ребру.

106. Стороны оснований правильной треугольной усеченной пирамиды относятся, как 1 : 3. Периметр боковой грани равен

периметру одного из оснований. Найдите угол между боковым ребром и плоскостью основания.

107. Центр каждого основания правильной треугольной усеченной пирамиды соединен с вершинами другого основания (рис. 66). Найдите длину линии, которая соединяет попарно точки пересечения построенных отрезков, если периметры осно­ваний усеченной пирамиды равны Р и Р\.

Площадь поверхности усеченной пирамиды

108. Стороны основания правильней шестиугольной усечен­ной пирамиды 5 и 11 см. Расстояние между параллельными сторонами оснований, не лежащими в одной грани, 19 см. Най­дите площадь поверхности усеченной пирамиды.

109. Сечение, проходящее через середины всех боковых ребер правильной пирамиды, разделило ее на части, площади полных поверхностей которых относятся, как 3 : 11. Определите двугранный угол при основании пирамиды.

110. Периметры оснований правильной треугольной усечен­ной пирамиды 18 и 36 см. Расстояние от вершины меньшего основания до противолежащей стороны другого основания 7 см. Найдите площадь боковой поверхности усеченной пи­рамиды.

111. Периметры оснований правильной шестиугольной усе­ченной пирамиды АВСВЕРА\В1С\В\Ё\Р\ 28 и 124 см. Рас­стояние от вершины А \ меньшего основания до прямой СЕ равно 17 см. Найдите площадь боковой поверхности усеченной пира­миды.

112. Основания усеченной пирамиды — ромбы с отно­шением сторон 3 : 4 и длинами сторон 15 и 25 см. Одно из боко­вых ребер перпендикулярно плоскости основания и равно мень­шей диагонали меньшего основания. Найдите площадь по­верхности усеченной пирамиды.

Правильные многогранники

113. Докажите, что тетраэдр с вершинами в центрах масс граней правильного тетраэдра — правильный. Как относятся площади поверхностей этих тетраэдров?

114. В каком отношении делятся при пересечении высоты правильного тетраэдра?

115. Для каких п можно построить сечение октаэдра плос­костью, являющееся правильным ге-угольииком?

116. Докажите, что градусные меры двугранного угла пра­вильного тетраэдра и угла между смежными гранями октаэдра в сумме составляют 180°.

117. Точка О — середина высоты МО правильного тетраэдра МАВС. Докажите, что лучи ОА, 0В, ОС попарно взаимно пер­пендикулярны.

Движения

118. Сколько центров симметрии имеют две параллель­ные плоскости? Какую фигуру образуют все эти центры?

119. Постройте фигуру, симметричную данной треугольной пирамиде относительно центра масс ее: а) основания; б) данной боковой грани.

120. Постройте фигуру, симметричную дайной правильной га-угольной пирамиде (п == 4; 6; 3) относительно середины: высо­ты пирамиды.

121. АВСВА\В\С\В\ — параллелепипед, точка М 6 ал. Постройте отрезок МN, у которого середина находится на плос­кости СС\А, а точка N лежит на ребре СВ.

122. Постройте отрезок с концами на ребрах АВ и МС и сере­диной на высоте МО правильной пирамиды МАВС.

123. Докажите, что любую четырехугольную пирамиду можно пересечь плоскостью так, чтобы сечение имело центр симметрия.

124. Напишите уравнение плоскости, которая симметрична плоскости х + у -\- г — 3=0 относительно точки М (2; 2; 2).

125. Дан квадрат АВСВ с вершинами А (4; 0; 0) и В (8; 3; 0), плоскость которого параллельна осж Ог. Найдите координаты вершин квадрата, который симметричен данному относительно точки (2; 2; 2).

126. МАВСВ — правильная пирамида. Постройте фигуру, симметричную относительно плоскости основания: а) средней линии боковой грани (два случая); б) отрезку, соединяющему центры масс граней МАВ и МВС; в) грани МАО.

127. АВСА\В\С\ — правильная приема. Постройте фигуру, симметричную относительно плоскости АВВ\: а) отрезку В^', б) данному отрезку с концами на ЕС и А\С\.

13В. Все ребра пирамиды МАВСВ равны. Найдите на плос­кости ее основания точку, равноудаленную от точек Р и У, лежа­щих на МА и МС.

129. Точки В и Е находятся на боковых гранях правиль­ной пирамиды МАВС. Найдите на плоскости АВС точку с наи­меньшей возможной суммой расстояний от В и Е.

130. Точки В и Е находятся на высоте треугольной пи­рамиды МАВС. Постройте на поверхности пирамиды все точки, равноудаленные от точек В и Е.

131. Точки В та Е находятся на стороне основания правиль­ной пирамиды МАВС. Найдите на поверхности пирамиды все точки, равноудаленные от В и Е.

132. На гранях АВВ\А\ и ВСС\В{ правильной треугольной приемы АВСА\В\С\ даны точки В и Е. Постройте равнобедрен­ный треугольник, у которого вершина находится на ВВг, концы основания — на АВ и ВС, а боковые стороны проходят че­рез В и Е.

133. Точки В и Е находятся на гранях МАВ и МВС пра­вильной пирамиды МЛ.ВС. Постройте равнобедренный треуголь­ник с вершиной на МВ, концами основания на АВ и ВС, чтобы боковые стороны содержали В у. Е.

134. Точки Е и Р находятся на гранях МАВ и МСО правиль­ной четырехугольной пирамиды МАВСО. Постройте равнобокую трапецию, у которой одно основание лежит на основании пирамиды, концы другого — на ребрах МВ и МС, а боковые стороны содержат точки Е и Р.

135. АВСВЕРА\В\С\В\Е\Р\ — правильная призма. Построй­те на ее поверхности все точки, принадлежащие плоскости сим­метрии плоскостей: а)АА\В та СС\Р', б) АА\В и АА\Е; в) АА\В и АА\В; г) АА^В и ВВ\С; д) АА^С и ВВ^Р; е) АА^В и ВВ\Е;

ж) АА ,С и ВВ\Р.

Равенство пространственных фигур

136. Равны ли две треугольные призмы, если три стороны основания и боковое ребро одной равны трем сторонам осно­вания и боковому ребру другой? Если нет, то какое нужно до­полнительное условие, чтобы утверждать, что призмы равны?

137. Две пирамиды имеют равные высоты, их общее осно­вание — квадрат АВСО. Докажите, что эти пирамиды равны, если их вершины ортогонально проектируются: а) в точки А и С; б) середины двух сторон квадрата.

138. авсва\в[с\в\ куб. Докажите, что пирамиды АВСВ\ и 1)В\С\В\ равны.

139. Сформулируйте несколько признаков равенства пра­вильных призм. Обоснуйте эти признаки.

140. Сформулируйте несколько признаков равенства пра­вильных пирамид. Обоснуйте эти признаки.

141. Докажите, что две треугольные призмы равны, если их боковые грани соответственно равны.

142. Равны ли две прямые треугольные призмы, если все диагонали их боковых граней соответственно равны?

143. МАВСВЕР — правильная пирамида. Докажите равен­ство пирамид: а) МАВС и МВЕР; б) МВСЕ и МАРВ.

144. АВС^ЕРА^В^С^^^Е^Р^ — правильная призма. Рав­ны ли пирамиды: а) С^ВСВ и ЕЕ\В\Р^, б) А^АВР и С\СВЕ;

в) ВАА^В и А^СС^ВЧ

Цилиндр

145. Какую фигуру образуют все точки, удаленные от дан­ной прямой I на. а и равноудаленные от данных точек А и В?

146. Постройте изображение вписанных в окружность пра­вильного восьмиугольника и правильного двенадцатиуголь­ника.

147. Изобразите вписанный в окружность прямоугольный треугольник с отношением катетов 2 : 3.

148. Изобразите две равные хорды окружности, пересекаю­щиеся в данной точке М под прямым углом.

149. Изобразите две равные хорды окружности, пересекаю­щиеся в данной точке М под углом в 60°.

150. Постройте касательную к данному эллипсу в данной точке этого эллипса.

151. Постройте изображения описанных около окружности ромба с углом 45° и равнобокой трапеции с углом 45° при боль­шем основании.

152. Вершины прямоугольника лежат на окружностях осно­ваний цилиндра, у которого радиус 13 см, а образующая 32 см. Зная, что стороны прямоугольника относятся, как 1 : 4, найдите его площадь.

153. Диагональ осевого сечения цилиндра равна сумме его радиуса и высоты. Найдите отношение сторон осевого сечения цилиндра.

154. Диаметр барабана лебедки 530 мм, его длина 727 мм. За время работы на барабан наматывается 225 м троса диамет­ра 17 мм. Во сколько слоев наматывается трос?

155. Около данного цилиндра опишите правильную четырех­угольную пирамиду, высота которой вдвое больше высоты цилиндра.

156. Высота и основание равнобедренного треугольника 8 и 6 см. Цилиндр касается всех сторон треугольника, его обра­зующие наклонены к плоскости треугольника под углами по 30°. Найдите радиус цилиндра.

157. Найдите радиус равностороннего цилиндра, у которого ось лежит на диагонали куба с ребром а, а каждая из окруж­ностей оснований касается трех граней куба, имеющих об­щую вершину.

Конус

158. В равносторонний конус, образующая которого I, впи­сана правильная шестиугольная призма, боковая грань кото­рой — квадрат. Найдите площади диагональных сечений призмы.

159. Диагональ октаэдра с ребром а является высотой конуса, на поверхности которого находятся 4 ребра октаэдра (рис. 67). Найдите площадь осевого сечения конуса.

160. Радиус основания конуса 9 см, высота 7 см. Какую наибольшую площадь может иметь сечение конуса плоскостью, проходящей через вершину конуса?

161. Наибольшая возможная площадь сечения конуса плос­костью, проходящей через вершину конуса, вдвое больше пло­щади осевого сечения. Найдите угол между образующей и плос­костью основания конуса.

162. В конус вписана правильная треугольная призма, все ребра которой равны а. Четыре вершины призмы лежат на

окружности основания, а две на боковой поверхности конуса (рис. 68). Найдите высоту конуса.

163. Ребро куба АВСВА\В\С\В\ равно а. Диагональ АС\ со­держит высоту равностороннего конуса с вершиной А. Окруж­ность основания конуса касается трех граней куба с общей точ­кой С1. Найдите образующую конуса.

164. Основание конуса находится на грани АВСВ куба АВСВА\В\С\В\, у которого ребро а. Вершина конуса находится в центре грани А\В\С\В\. Найдите радиус основания конуса, зная, что боковая поверхность касается прямой, которая про­ходит через: а) В\ и середину ВС; б) В и середину ВС\; в) сере­дины ВС и ВЁ1 (рис. 69).

Усеченный конус

165. Какую фигуру образуют середины диагоналей всех осевых сечений усеченного конуса?

166. Какую фигуру образуют середины всех отрезков, у каж­дого из которых концы находятся на окружностях оснований усеченного конуса?

167. Радиусы оснований усеченного конуса 25 и 16 см. В осе­вое сечение этого усеченного конуса можно вписать окружность. Определите ее радиус.

168. Диагональ осевого сечения усеченного конуса делится

осью усеченного конуса на части в 13 — и 26 — см. Зная,

что образующая усеченного конуса 26 см, найдите радиусы оснований.

169. Два конуса, у которых радиусы оснований 10 и 15 см, имеют общую высоту, их плоскости оснований не совпадают. Найдите длину окружности, по которой пересекаются поверх­ности этих конусов.

Сфера и шар

170. Какую фигуру образуют основания перпендикуляров, опущенных из данной точки А на все плоскости, проходящие через данную точку В?

171. Из точки М к данному шару можно провести три взаим­но перпендикулярные касательные. Какую фигуру образуют все такие точки М?

172. Какую фигуру образуют вое точки, удаленные на о от данной сферы радиуса Ь?

173. Какую фигуру образуют центры всех сфер радиуса В, касающихся: а) данной плоскости 6^ б) двух данных плоскостей?

174. Даны плоскость б и точка М вне ее. Какую фигуру обра­зуют центры сфер радиуса В, которые проходят через точку М и касаются плоскости б?

175. Докажите, что касательные, проведенные из данной точки к данной сфере, имеют равные длины.

176. Плоскость 6 касается шара в точке А. На продолжении диаметра АВ = а взята такая точка С, что ВС == Ь, в ней поме­щен точечный источник света. Найдите площадь тени шара на плоскость 6.

177. Диаметры АВ, СВ, ЕР сферы взаимно перпендикуляр­ны. Каждый из них разделен на п равных частей, через точки деления проходят плоскости, перпендикулярные к этому диаметру. На сколько частей эти плоскости разделили сферу, если: а) п == 4; б) п == 6; в) п --=- 5; г) п == 8?

178. В шаре радиуса 18 см проведены два взаимно перпен­дикулярных сечения, радиусы которых откосятся, как 2 : 3. Зная, что общая хорда этих сечений 2 см, найдите площади сечений.

179. В шаре построены два взаимно перпендикулярных сечения, площади которых 185л и 320я см2. Определите радиус шара, если общая хорда этих сечений имеет длину 16 см.

180. Изобразите вписанную в сферу треугольную пирамиду, боковые ребра которой взаимно перпендикулярны.

181. В сферу радиуса Н вписана правильная шестиугольная призма. Радиус сферы, проведенный в вершину призмы, обра­зует с плоскостью боковой грани угол 30°. Найдите площадь боковой поверхности призмы.

182. Плоский угол при вершине правильной треугольной пирамиды — прямой, сторона основания а. Найдите радиус описанной сферы.

183. Докажите, что радиус сферы, описанной около пирами-

ды, у которой высота Н, а каждое боковое ребро I, равен —. т

Установите, при каком соотношении между I и Н центр описан­ной сферы находится внутри пирамиды.

184. У треугольной пирамиды МАВС: МА == ВС ===16 см, МВ == АС =з 19 см, МС == АВ == 21 см. Определите радиус опи­санной сферы.

185. Радиусы окружностей, описанных около основания и около боковой грани правильной треугольной пирамиды, 8 и 7 см. Найдите радиус описанной сферы.

186. В прямую четырехугольную призму можно вписать шар. Верно ли, что суммы площадей ее противолежащих боко­вых граней равны?

187. Скрещивающиеся ребра тетраэдра попарно равны. Докажите, что центры описанной и вписанной сфер совпадают.

188. Все ребра четырехугольной пирамиды равны а. Найди­те радиус сферы, которая касается всех ребер пирамиды.

189. Каждое ребро тетраэдра имеет длину а. Найдите ра­диус сферы, которая касается всех ребер тетраэдра.

190. В конус, у которого радиус основания 9 см, а образую­щая 15 см, вписан шар. Найдите длину линии, по которой касаются их поверхности.

95

Сфера и ее уравнение

191. Радиусы двух шаров 17 и 25 см. Длина линии, по ко­торой пересекаются поверхности шаров 30л см. Определите рас­стояние между центрами шаров.

192. Имеется обломок шара. На основании каких построе­ний и измерений вы могли бы определить его радиус?

193. Установите взаимное расположение сфер х2 + у2 + + г2 = 4 и х2 + у2 + г2 - 24ж - 12у + 16г - 168 = 0.

194. Установите взаимное расположение сферы х2 + у2 + 4- 22 == 16 и плоскости 2х — 2у + 2 — 12 == 0.

195. Напишите уравнение сферы, которая проходит через точки (2; 3; 4) и (3; —1; 5) и касается плоскости ху.

Объем прямоугольного параллелепипеда

196. Как, разрезав на две части, сложить куб из прямо­угольного параллелепипеда, измерения которого: а) 4, 6, 9 см;

б) 9, 12, 16 см; в) 16, 20, 25 см?

197. На какое наименьшее число частей можно разрезать куб, чтобы из этих частей можно было сложить призму, осно­вание которой: а) прямоугольная трапеция; б) равнобокая тра­пеция?

198. Найдите объем прямоугольного параллелепипеда, у ко­торого расстояния от центра до ребер равны 13, 20, 21 см.

199. На ребрах АА\ и ВВ\ прямоугольного параллелепипеда АВСВА\В\С\В\ даны точки М и N. Постройте плоскость, которая проходит через эти точки и делит параллелепипед на равные части.

200. Решите задачу 199 для случая, когда точки даны на смежных боковых гранях.

201. Длины ребер четырех кубов (в сантиметрах) выражены последовательными целыми числами. Объем одного куба равен сумме объемов остальных. Определите длины ребер этих кубов.

202. Докажите, что из всех прямоугольных параллелепипе­дов с данной длиной диагонали наибольший объем имеет куб, используя теорему: «Произведение трех положительных чисел, сумма которых постоянна, имеет наибольшую величину, когда эти числа равны».

203. Найдите объем прямоугольного параллелепипеда, у которого периметры трех граней 36, 40, 48 см.

204. Найдите объем прямоугольного параллелепипеда, у ко­торого длина диагонали 81 см, а измерения относятся, как 7 : 14 : 22.

Объем прямого параллелепипеда

205. В прямом параллелепипеде АВС^А\В\С^^\ диагонали АС\ и В^\ взаимно перпендикулярны и равны 6 и 8 дм. Зная, что ВС == 3 дм, найдите объем параллелепипеда.

96206. Двугранный угол между боковыми гранями прямого параллелепипеда 60°, площади диагональных сечений 56 и 72 см2, длина бокового ребра 4 см. Найдите объем паралле­лепипеда.

207. Расстояния от центра прямого, параллелепипеда до основания и боковых граней 9, 8, 6 см. Периметр основания Р = == 70 см. Определите объем параллелепипеда.

208. Площадь поверхности прямого параллелепипеда 176 см2. Расстояния от центра параллелепипеда до его граней 1, 2, 3 см. Найдите объем параллелепипеда.

Объем наклонного параллелепипеда

209. Основание параллелепипеда — прямоугольник со сторо­нами о и Ь. Боковое ребро равно I и образует со сторонами осно­вания углы в 45° и 60°. Найдите объем параллелепипеда.

210. Каждая грань параллелепипеда — ромб с диагоналями 6 и 8 дм. Плоские углы при одной вершине — острые. Найдите объем параллелепипеда.

Объем призмы

211. Площадь основания правильной четырехугольной призмы О. Длины диагоналей двух граней относятся, как 1 : 3.

Найдите объем призмы.

212. Железобетонная силосная башня из стандартных плит имеет форму правильной призмы, у которой расстояние от прямой, проходящей через центры оснований, до стен 3,65 м. Зная, что объем стен составляет 6,45 % полезного объема,

определите толщину стен.

213. Даны две одноименные правильные призмы. У одной сторона основания а, боковое ребро Ь, у другой сторона основа­ния Ь, боковое ребро а (а > Ь). У какой из призм объем больше?

214. Две одноименные правильные га-угольные призмы равновелики. У какой из них больше площадь боковой поверхности

215. Поперечное сечение канала — трапеция (без верхнего основания), дно и стенки канала длиной по о. При какой ве­личине угла между дном и стенками канала его пропускная способность будет наибольшей?

216. Площадь боковой грани правильной шестиугольной призмы 'О. Плоскость проходит через боковое ребро и делит призму на части, объемы которых относятся, как 1 : 3. Найдите площадь сечения.

217. Высота правильной шестиугольной призмы Н. Угол между двумя равными диагоналями призмы, проведенными из одной вершины, 30°. Найдите объем призмы.

218. Основание прямой призмы — трапеция, периметр которой 58 см. Площади параллельных боковых граней 96 и 264 см2, а площади двух других боковых граней 156 и 180 см2. Найдите объем призмы.

219. Основанием прямой призмы является трапеция, площадь которой 306 см2. Площади параллельных боковых граней 40 и 300 см2, а площади других боковых граней 75 и 205 см2. Найдите объем призмы.

220. Основание прямой призмы — четырехугольник, вписанный в окружность радиуса 65 см. Площади боковых граней относятся, как 63 : 52 ; 39 : 16. Диагональ наименьшей боковой грани 40 см. Найдите объем призмы.

221. В цилиндр высоты 12 см вписана шестиугольная призма, у которой три стороны, взятые черве одну, имеют длины по 3 см, остальные стороны основания — по 5 см. Найди­те объем призмы,

222. В цилиндр высоты 8 см вписана восьмиугольная призма, у которой длины четырех сторон основания, взятых через одну, по 2 см, а остальных сторон основания — по 3 см. Найдите объем призмы.

223. В сферу радиуса Л вписана правильная треугольная призма. Радиус сферы, проведенный в вершину призмы, накло­нен к плоскости боковой грани под углом к. Найдите объем призмы.

Объем пирамиды

234. Стороны основания треугольной пирамиды 15, 16, 17 см. Каждое боковое ребро наклонено к плоскости основания под углом в 45°, Найдите объем пирамиды.

226, Длина каждого бокового ребра пирамиды 65 см. Ее ос­нование — трапеция с длинами сторон 14, 30, 50, 30 см. Найди­те объем пирамиды.

236. Длин» каждого бокового ребра пирамиды 35 см, сторо­ны основания 20, 34, 60, 66 см. Найдите объезд пирамиды.

227. Высота правильной вдестиурол&ной пирамиды Я, Рас­стояние от середины высоты де бокового ребра у 4 раза меньше стороны основания. Найдите объем пирамиды.

228. Длина пятке ребер треугольной пирамиды не более 2 см. Докажите, что объем пирамиды не более 1 см3.

229. Докажите, что объем треугольной пирамиды меньше

— квадратного корня из произведения длин всех ребер пира­миды.

230. Стороны основания усеченной ' треугольной призмы 28, 45, 53 см, а боковые ребра перпендикулярны основанию и равны 13, 14, 15 см. Найдите объем усеченной призмы (рис. 70).

Если плоскость, не параллельная плоскости основания призмы, пересе­кает все боковые ребра призмы, то полученные части приемы будем называть усеченными призмами.

231. Докажите, что объем усеченной треугольной призмы равен произведению площади перпендикулярного сечения на среднее арифметическое длин боковых ребер.

232. Стороны основания прямого параллелепипеда 6 и 8 см, угол между ними 30°. Плоскость отсекает на трех боко­вых ребрах отрезки в 8, 10, 11 см. Найдите объем той части призмы, которая заключена между основанием и плоскостью сечения.

233. Основание прямой призмы трапеция, у' которой стороны АВ == СО == 13 см, ВС = 18 см, АТ> == 28 см. Плос­кость проходит через точку С и отсекает на ребрах ВВ\ и ВВ\ от­резки по 9 см. Найдите объем части призмы между основанием и проведенным сечением.

234. В параллелепипеде АВСВА\В\С\0\ точка К — середина ребра АА\, точка М — середина ребра СС\, ВВ\ = а, КВ\ == Ъ, МВ\ == с, причем ВВ\, КВ\ и МВ1 попарно взаимно перпенди­кулярны. Найдите объем параллелепипеда.

235. Развертка поверхности пирамиды — квадрат со сторо­ной а. Найдите объем пирамиды.

236. Длины сторон основания треугольной пирамиды 32, 34, 34 см. Периметры двух равных боковых граней по 150 см, третьей — 162 см. Найдите объем пирамиды.

237. Даны тетраэдры МАВС и М\А \В\С\, у которых трехгран­ные углы с вершинами М и М1 равны. Докажите, что объемы этих тетраэдров относятся, как произведения длин ребер равных трехгранных углов.

238. Через сторону основания и среднюю линию противоле­жащей боковой грани правильной четырехугольной пирамиды проведена плоскость. Найдите отношение объемов частей, на которые плоскость разделила пирамиду.

239. Через сторону основания и середину высоты правиль­ной четырехугольной пирамиды проведена плоскость. Найдите отношение объемов частей, на которые при этом разделилась пирамида.

240. Развертка пирамиды — равнобедренный треугольник с основанием 18 см и высотой, проведенной к основанию, 12 см. Найдите объем пирамиды.

241. Докажите» что объем правильной пирамиды меньше

та

-у куба длины ее бокового ребра.

242. Каждое боковое ребро пирамиды МАВСВ равно I. Известно, что ^ АМВ = /-. ВМС == ^. АМС == 90°, ^ АМО == = ^ СМВ. Найдите объем пирамиды.

243. Основание пирамиды — трапеция (или треугольник) со средней линией АВ, вершина пирамиды М, О — середина сто­роны, параллельной средней линии. Докажите, что объем

пирамиды равен — произведения площади сечения МАВ на з

расстояние от точки О до плоскости МАВ (рис. 71).

244. Основания многогранника лежат в параллельных плоскостях, все остальные грани — треугольники или трапе­ции, все вершины которых лежат на основаниях. Докажите,

что объем многогранника V = — ((?1 + Ог + 4Оч — площади оснований, а

245. Найдите объем чердачного помещения, у которого основание — прямоугольник 6 X 12 м, высота 1,5 м, длина гребня 9 м.

Объемы подобных тел

246. У двух правильных треугольных пирамид двугранные углы при основаниях равны по 60°. Высота одной пирамиды равна стороне основания другой. Как относятся объемы этих пирамид?

247. При каком построении плоскость рассекает прямоуголь­ный параллелепипед с измерениями 2, 4, 9 см на два подоб­ных параллелепипеда? Найдите объемы этих параллеле­пипедов.

248. Через центр масс основания треугольной пирамиды проходит плоскость, параллельная боковой грани. Найдите отношение объемов частей, на которые эта плоскость делит пирамиду.

249. Объем правильной четырехугольной пирамиды МАВСО равен V. В результате параллельного переноса вершина А пе­реместилась в центр основания. Найдите объем общей части обоих положений пирамиды.

250. Найдите отношение объемов частей, на которые пра­вильная треугольная пирамида делится плоскостью, проходя­щей через середину высоты пирамиды параллельно боковой грани.

251. Решите задачу 249 для правильной четырехугольной пирамиды.

252. Площади оснований усеченной пирамиды относятся, как 1 : 49. Площадь сечения, параллельного плоскостям осно­ваний, равна полу сумме площадей оснований. Как относятся объемы частей, на которые это сечение разделило усеченную пирамиду?

Объем цилиндра

253. Бездымный порох изготовляется в виде цилиндра, в котором 7 цилиндрических каналов с осями, параллельными оси цилиндра, и радиусами, в 11 раз меньшими радиуса ци­линдра (рис. 73). Какая часть пороха сгорит после того, как горение перестанет быть прогрессивным? 100

254. Корыто полуцилиндрической формы наполнено водой. Какая часть воды выльется, если корыто наклонить на 30° так, чтобы образующие цилиндра оставались горизонтальными?

255. Какой из вписанных в данную сферу цилиндров имеет наибольший объем?

Объем конуса

256. А.В == 10 см и СВ •= 14 см— хорды основания конуса, вершина которого М. Плоскости МАВ и МАС наклонены к плос­кости основания конуса под углами 30° и 45°. Определите объем конуса.

257. Радиусы оснований и образующая усеченного конуса соответственно равны 5,10,13 см. Построены два конуса, у кото­рых вершины — центры оснований усеченного конуса, а осно­вания совпадают с основаниями усеченного конуса. Найдите объем общей части этих конусов.

258. Около треугольной пирамиды, у которой периметры боковых граней 180, 194, 196 см, описан конус. Зная, что высота конуса лежит на одной из боковых граней пирамиды, опреде­лите объем конуса.

259. Образующая конуса I. Какую наибольшую величину может иметь его объем?

Объем тела вращения

260. Равносторонний треугольник периметра Р вращается вокруг прямой, которая находится в плоскости треугольника, проходит через его вершину вне треугольника под углом 15° к его стороне. Определите объем тела вращения.

261. Найдите объем тела, образованного вращением квад­рата со стороной а вокруг прямой, которая находится в плос­кости квадрата, проходит через его вершину вне квадрата под углом ст к стороне квадрата.

262. Параллелограмм, у которого стороны равны 21 и 89 см, а диагонали относятся, как 41 : 50, вращается вокруг меньшей стороны. Найдите объем тела вращения.

263. Найдите объем тела, образованного вращением ромба со стороной 15 см и отношением диагоналей 3 : 4 вокруг прямой, которая проходит в плоскости ромба через вершину острого угла перпендикулярно стороне ромба.

264. Равнобедренный треугольник с основанием 30 см и высотой 20 см вращается вокруг боковой стороны. Найдите объем тела вращения.

Объем шара и его сегмента

265. Расстояние между центрами трех шаров, которые по­парно касаются,— 6, 8, 10 см. Определите объемы этих шаров.

266. Четыре шара радиуса Л расположены так, что каждый касается остальных. Найдите объем шара, который касается всех этих шаров.

267. Найдите объем шара, вписанного в тело, образованное вращением прямоугольного треугольника с катетами 21 и 28 см вокруг гипотенузы.

268. Определите угол при вершине осевого сечения конуса, если отношение объема конуса к объему вписанного шара:

а) 9 : 4; б) 8 : 8.

269. В цилиндр вписан конус, а в конус — шар. Объемы конуса и шара вместе составляют 40 % объема цилиндра. Найдите величину угла при вершине осевого сечения ко­нуса.

270. В цилиндр вписана правильная треугольная пирамида, а в нее — шар. Зная, что объем шара в 24 раза меньше объема цилиндра, найдите плоский угол при вершине пира­миды.

271. Найдите объем шара, вписанного в пирамиду, грани которой лежат на координатных плоскостях и ва плоскости 12з; + Зу + 42 — 24 == 0.

272. В шар вписаны равносторонний цилиндр и равносто­ронний конус. Докажите, что У^,== -\/Ущ • Уу .

273. Около шара описаны равносторонний цилиндр и равно­сторонний конус. Докажите, что Уц == "УКи • у » •

274. Докажите, что объем шарового сегмента равен яй2 (л — -з- )> где и — радиус шара, а Н — высота сегмента.

275. В конус, у которого радиус основания 6 см, а образую­щая 10 см, вписан шар. Через линию касания этих тел прове­дена плоскость. Найдите отношение объемов частей, на которые эта плоскость делит шар.

276. Шар радиуса 9 см плавает в воде, высота выступаю­щей из воды части 6 см. Найдите плотность материала, из кото­рого сделан шар.

277. Сосуд в форме полушара наполнен водой. Какая часть воды выльется, если сосуд наклонить на: а) 30°; б) 45°?

278. Высота равностороннего конуса равна Н и является диаметром шара. Найдите объем той части шара, которая лежит вне конуса.

Площадь поверхности цилиндра

279. Все ребра правильной треугольной призмы равны а. Боковые ребра являются осями цилиндрических поверхностей

радиуса -^-. Вычислите площадь поверхности тела, ограничен­ного названными цилиндрическими поверхностями и основа­ниями призмы.

102

280. В цилиндр вписана четырехугольная призма, у которой периметры боковых граней 30, 45, 56, 64 см. Зная, что одно из диагональных сечений призмы содержит ось цилиндра, най­дите площадь полной поверхности цилиндра.

281. Длина ребра куба а. Ось равностороннего цилиндра лежит на диагонали куба. Каждая окружность основания цилиндра касается трех граней куба. Найдите объем и площадь поверхности цилиндра.

Площадь поверхности конуса

282. Цилиндр и конус имеют общее основание и общую высоту. Площади их полных поверхностей относятся, как 7 : 4. Найдите угол между образующей и плоскостью основания конуса.

283. В конус вписана четырехугольная пирамида, у которой периметры боковых граней 78, 94, 104, 112 см. Одно из диаго­нальных сечений пирамиды содержит высоту конуса. Найдите площадь поверхности конуса.

284. Квадрат АВСВ площадью 120 см2, согнув, поместили на поверхности конуса. При этом диагональ АС совпала с об­разующей, а диагональ ВО оказалась на боковой поверхности конуса и концы ее совпали (рис. 74). Определите объем и пло­щадь поверхности конуса.

285. Радиус полушара Н. На основании полушара построен конус, каждая образующая которого делится поверхностью полушара в отношении 1 : 2, считая от вершины. Найдите пло­щадь поверхности этого конуса.

286. В сферу радиуса Л вписан конус наибольшего воз­можного объема. Определите площадь поверхности этого конуса.

287. Радиус основания конуса Л. Сфера касается основания конуса и делит каждую образующую конуса на три равные части. Найдите площадь поверхности конуса.

Площадь поверхности шара

288. Ребро куба а. Найдите площадь сферы, которая про­ходит через все вершины одной грани и касается параллель­ной грани куба.

289. В куб, длина ребра которого а, вписана сфера. Найди­те площадь сферы, которая касается вписанной сферы и трех граней куба.

290. Развертка боковой поверхности треугольной пирами­ды — квадрат со стороной а. Найдите площадь сферы, вписан­ной в эту пирамиду.

291. Докажите, что площадь сферической поверхности шаро­вого сегмента 8 == 2этЛН, где Л — радиус шара, а Н — высота сегмента.

292. Высота правильного тетраэдра Н = 12 см. Точка, равно­удаленная от всех вершин тетраэдра, является центром сферы радиуса 4 см. Определите площадь той части сферы, которая находится внутри тетраэдра.

293. Радиусы двух шаров а и 2а. Центр меньшего шара находится на поверхности большего. Найдите объем и площадь поверхности общей части этих шаров.

294. Около сферы описана правильная шестиугольная призма. Через боковое ребро призмы проведена плоскость, раз­делившая призму на части с отношением объемов 1 : 5. Как относятся площади частей, на которые эта плоскость разделила сферу?

295. Около сферы описана правильная треугольная призма. Через боковое ребро призмы проходит плоскость, которая делит призму на части с отношением объемов 1 : 2. Как относятся площади частей, на которые эта плоскость делит сферу?

Характеристики

Тип файла
Документ
Размер
440 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее