84275 (675688), страница 2

Файл №675688 84275 (Дифференциальные уравнения с разрывной правой частью) 2 страница84275 (675688) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

При =-1 и решение выражается формулой ;

п ри , решение :

Исходя из требования непрерывности решения при :

x(0)= ,

. Поэтому решение выражается формулой . При производной не существует.

Пример 2.

При 3, решение ,

при , решение :

x

При возрастании каждое решение доходит до прямой 0. Поле направлений не позволяет решению сойти с прямой 0 ни вверх, ни вниз. Если же продолжить решение по этой прямой, то получаемая функция не удовлетворяет уравнению в обычном смысле, т.к. для нее , а правая часть уравнения при равна 1-sign 0=1 0.

Кроме этого, уравнение с непрерывной правой частью равносильно интегральному уравнению

В случае, когда f(t,x) разрывна по t и непрерывна по x (пример 1), решением уравнения можно назвать функции, удовлетворяющие интегральному уравнению. В этом случае, решения с одной стороны от S подходят к S, а с другой стороны сходят с S (траектории “прошивают” поверхность):


S

Решение x(t) попадающее при на поверхность разрыва S, продолжается однозначно на значения и близкие к ; пересекая S решение удовлетворяет уравнению всюду, кроме точки пересечения, в которой решение не имеет производной (в первом примере S – это прямая t=0).

В другом случае, когда с обеих сторон поверхности разрыва S решения приближаются к S (траектории “стыкуются” – скользящий режим), это определение решения непригодно, т.к. ничего не говорит о том, как продолжится решение, попавшее на S (пример 2).

Необходимо поэтому было дать такое определение решения, которое охватило бы эти два основных случая и формулировалось бы независимо от расположения линий и поверхностей разрыва.

§2. Определения решения.

Рассмотрим уравнение или систему в векторной записи

, (1)

с кусочно-непрерывной функцией f в области G; , , M – множество (меры нуль) точек разрыва функции f.

Большинство известных определений решения уравнения (1) могут быть изложены следующим образом. Для каждой точки области G указывается множество в n-мерном пространстве. Если в точке (t,x) функция f непрерывна, то множество состоит из одной точки, совпадающей со значением функции f в этой точке. Если же -точка разрыва функции f, то множество задается тем или иным способом.

Определение2. Решением уравнения (1) называется решение дифференциального включения

, (2)

т.е. абсолютно непрерывная вектор-функция x(t), определенная на интервале или отрезке I, для которого почти всюду на I

.

Другими словами, решение дифференциального уравнения (1) определяется как функция, у которой производная может принимать любые значения из некоторого множества .

Иногда (2) называют диф. уравнением с многозначной правой частью. Функцию называют многозначной функцией, подчеркивая, что значение - множество. Если для всех (t, x) множество состоит из единственной точки, то (2) – обычное диф. уравнение. Функция называется однозначной в точке , если множество F состоит из единственной точки.

Одним из наиболее популярных определений решения разрывной системы является определение А.Ф. Филиппова.

А. Выпуклое доопределение.

Применимо, в частности, к системам с малым запаздыванием того или иного рода, а также к некоторым системам с сухим трением.

Для каждой точки пусть - наименьшее выпуклое замкнутое множество, содержащее все предельные значения вектор-функции , когда Решением уравнения (1) называется решение включения (2) с только что построенным . Т.к. - множество меры нуль, то при почти всех мера сечения множества плоскостью равна нулю. При таких множество определено для всех . В точках непрерывности функции множество состоит из одной точки и решение удовлетворяет уравнению (1) в обычном смысле. Если же точка лежит на границах сечений двух или нескольких областей , …, плоскостью , то множество есть отрезок, выпуклый многоугольник или многогранник с вершинами , , где

= .

Все точки ( = 1, … , содержатся в , но не обязательно, чтобы все они являлись вершинами.

Определение 3.

Вектор-функция , определенная на интервале называется решением уравнения (1), если она абсолютно непрерывна и если при почти всех для любого вектор принадлежит наименьшему выпуклому замкнутому множеству ( -мерного пространства), содержащему все значения вектор-функции , когда пробегает почти всю -окрестность точки в пространстве X (при фиксированном ), т.е. всю окрестность, кроме множества мера нуль.

Такое определение дает однозначное продолжение решения по поверхности разрыва.

Рассмотрим случай, когда функция разрывна на гладкой поверхности , задаваемой уравнением . Поверхность S делит свою окрестность в пространстве на области и . Пусть при и приближении к из областей и функция имеет предельные значения

Тогда множество , о котором говорится в доопределении А, есть отрезок, соединяющий концы векторов и , проведенных из точки .

Если этот отрезок при лежит по одну сторону от плоскости , касательной к поверхности в точке, то решения при этих переходят с одной стороны поверхности на другую:

Рис. 1.

Если этот отрезок пересекается с плоскостью , то точка пересечения является концом вектора , определяющего скорость движения

(3)

по поверхности в пространстве :

G -

f +

G -

f -

P

f 0

x

S

Рис. 2.

Причем касательный вектор к S , следовательно . Это значит, что функция , удовлетворяющая уравнению (3) в силу доопределения А считается решением уравнения (1). Разумеется, непрерывная функция , которая на данной части рассматриваемого интервала времени проходит в области (или в ) и там удовлетворяет уравнению (1), а на оставшейся части проходит по поверхности и удовлетворяет уравнению (3), также считается решением уравнения (1) в смысле доопределения А.

В уравнение (3) ,

, ( ),

- проекции векторов и на нормаль к поверхности в точке (нормаль направлена в сторону области ).

Вместе с тем множество F(t, x) можно было определить иначе. В качестве) возьмем произвольное ограниченное выпуклое множество, содержащее отрезок J:

f +


Рис. 3.

При этом на касательной плоскости появляются векторы, отличные от ; это приводит к тому, что кроме решения Филиппова появляются и другие решения.

Т.о. определение (А) А.Ф. Филиппова соответствует минимальному возможному определению множества F(t, x) среди всех допустимых. Это удобно в том отношении, что для решения в смысле Филиппова чаще, чем в других случаях, имеет место единственность решения.

Если весь отрезок с концами и лежит на плоскости P, то скорость движения по поверхности разрыва S определяется неоднозначно.

При , имеет место скользящий режим, о котором шла речь во введение. Пусть уравнение идеального скольжения имеет вид (3). Вычисляя для из условия , находим уравнение

, (4)

с помощью котрого и доопределяется движение в скользящем режиме (начальные условия для (4) выбираются на поверхности разрыва, т. е. S(x(0))=0).

Пример 3.

Решить систему

Всякое решение этой системы рано или поздно попадает на прямую и уже не может сойти с нее. Если точка М лежит на оси , то в окрестности этой точки вектор , компоненты которого - правые части системы, принимает два значения: при , (6,-2) при . Отложим из точки М эти два вектора и соединим их концы отрезком АВ:

Этот отрезок и будет искомым множеством, в котором, согласно определению 3, лежит конец вектора для точки М. В то же время вектор скорости должен лежать на оси . Т.к. решение не может сойти с нее ни вверх, ни вниз, следовательно, конец вектора лежит в точке пересечения отрезка АВ и оси . Т.о., этот вектор определяется однозначно. Легко подсчитать, что

Т.о., связь теорий уравнений (1) с разрывной правой частью с теорией диф. Включений (2) очевидна. Имея уравнение (1) с разрывной f(t, x) необходимо заменить значение в точке разрыва некоторым множеством. Это множество должно быть ограниченным, выпуклым, замкнутым. Кроме этого оно должно включать все предельные значения при (t, x) . После такой замены (для любой точки разрыва) вместо (1) получаем диф. включение (2), в котором многозначная функция удовлетворяет перечисленным требованиям.

Однако, в некоторых случаях множество в (2) в точках разрыва функции нельзя определить, зная только значения функции в точках ее непрерывности.

Пример 4.

Характеристики

Тип файла
Документ
Размер
953,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее