31053-1 (675609), страница 2

Файл №675609 31053-1 (Некоторые темы геометрии) 2 страница31053-1 (675609) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

УРАВНЕНИЕ ПЛОСКОСТИ.


Любая поверхность есть геометрическое место точек, ее составляющих, определенное уравнением

Иными словами, все точки, которые удовлетворяют этому уравнению, будут принадлежать поверхности.

Пусть в пространстве XYZ задана плоскость и к ней в точке K проведем вектор нормали . Так как плоскость ориентирована произвольно в пространстве, то вектор будет составлять с осями x, y, z углы , и соответственно.

Выберем на плоскости точку M, не совпадающую с K и свяжем с этой точкой вектор . Очевидно, что , где – модуль вектора , из уравнения получаем .

Получаем нормальное уравнение плоскости: .

Однако, если представим вектор как , а вектор , тогда подставив полученные выражения, получаем

Зная, что для любой точки, принадлежащей плоскости, с координатами (A,B.C) можно вычислить направляющие косинусы

с учетом которых можно уравнение преобразовать

,

которое известно, как уравнение плоскости.

ПРЯМАЯ КАК ПЕРЕСЕЧЕНИЕ ДВУХ ПЛОСКОСТЕЙ

Прямой линией назовем пересечение двух плоскостей в пространстве. Определение можно записать математически как .

ВЕКТОРНОЕ УРАВНЕНИЕ ПРЯМОЙ

Пусть плоскости и (рис. 6) за­да­ны уравнениями:

и

,

где ; ,

система из этих уравнений:

Уравнения называются общими уравнениями прямой в

пространстве, записанными в векторной форме.

ТЕМА 6Матрицы и определители.

МАТРИЦЫ И ОПЕРАЦИИ НАД НИМИ

Матрицей A называется любая прямоугольная таблица, составлен­ная из чисел , которые называют элементами матрицы и обозначается

Если в выражении (1) , то говорят о квадратной матрице, а если , то о прямоугольной.

Суммой двух матриц и называется матрица C, у которой , и записывают .

Произведением матрицы на число называется такая

матрица C = (cij), у которой (cij) = (kaij).

Если матрица A не нулевая, т.е. существует хотя бы один элемент матрицы A, отличный от нуля, тогда всегда можно указать натуральное число та­кое, что 1) у матрицы A имеется минор го порядка ; 2) всякий минор матрицы A порядка и выше равен нулю, тогда число , обладающее указанными свойствами называется рангом матрицы A и обозначается . Из определения вытекает, что 1) ранг любой прямоугольной матрицы не должен быть больше, чем минимальный размер матрицы. Если матрица квадратная, то ранг не может быть больше, чем размер матрицы. Математически это можно выразить так 2) если все элементы матрицы A равны нулю, т. е. ,то ранг этой матрицы тоже будет равен нулю .

ОПРЕДЕЛИТЕЛИ ИХ СВОЙСТВА

Определителем n-го порядка называется число равное алгебраической сумме , где есть алгебраические дополнения элемента , а - есть соответствующие миноры, т.е. определители (n-1)-го порядка, получающиеся из исходного определителя вычеркиванием первой строки и n-го столбца, на пересечение которых находится элемент .

Количество строк (или столбцов) в определителе называется порядком определителя

СИСТЕМА ЛИНЕЙНЫХ УРАВНЕНИЙ.

Решением системы называется совокупность из n чисел (с1, с2, ..., сn), которые, будучи подставленными в систему на место неизвестных x1, x2, ..., xn, обращают все уравнения системы в истинные равенства

Систему уравнений, имеющую хотя бы одно решение, называют совместной, систему, не имеющую решений, - несовместной.

Решения и считают различными, если хотя бы одно из чисел не совпадает с соответствующим числом

Если совместная система имеет единственное решение, то она называется определнной; если совместная система имеет по крайней мере два различных решения, то она называется неопределенной.

Формулы Крамера .

Метод Гаусса.

Пусть А - невырожденная матрица, то есть det A 0, и, следовательно, она имеет обратную матрицу А-1. Умножив обе части на А-1 слева, получаем:

А-1 (А Х) = А-1 В (А-1 А)Х = А-1 В Е Х = А-1 В, то есть Х = А-1 В и есть искомое решение системы (14). Действительно, подставив (16) в (14), получим А (А-1 В) = (А-1 А)В = Е В = В.

ТЕМА 7. Предел функции.

ПОНЯТИЕ ФУНКЦИИ.

Если некоторому множеству значений поставлено по определенному правилу F во взаимнооднозначное соответствие некоторое множество , то тогда говорят, что на множестве определена функция . Множество называется областью изменения функции, множество областью определения функции. Такая функция называется однозначной.

ЧИСЛОВАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ. ПРЕДЕЛ ЧИСЛОВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ. ПРЕДЕЛ ФУНКЦИИ

Если некоторому множеству значений поставлено по определенному правилу F несколько значений из множества , то тогда говорят, что на множестве задана многозначная функция.

Для того чтобы обозначить, что есть функция от , используют следующие виды записи: ; ; и т.д.

Если невозможно выразить , тогда говорят, что задана неявная функция и записывают: ; ; и т.д.

Если надо выделить некоторое частное значение функции, соответствующее какому-либо конкретному значению , тогда записывают: .

Если каждому натуральному n по какому-либо известному правилу поставлено в соответствие некоторое число , тогда говорят, что задана последовательность , которая обозначается как Правило, по которому формируется последовательность , обозначается как и называется общим числом последовательности. Число назовем пределом последовательности при стремящимся к , если для любого положительного, наперед заданного числа , определяющего окрестность точки A, можно указать такую , что для любого , отличного от из отрезка значений функции принадлежит и это записывают как .

Последовательность называется бесконечно большой, если для любого числа найдется номер N, такой что для всех выполняется неравенство . Геометрически это обозначает, что какой бы большой номер числа последовательности мы ни взяли, то всегда найдется число, принадлежащее этой последовательности, и лежащее правее выбранного, если последовательность составлена из положительных чисел, или левее, если последовательность составлена из отрицательных. Это записывают , или .

Последовательность называется бесконечно малой, если

ТЕОРЕМА: Для того чтобы последовательность сходилась к числу A не­обходимо и достаточно, чтобы выполнилось равенство , где .

Эта теорема дает связь между пределом сходящейся последовательности и бесконечно малыми.

Функции называется непрерывной при или в точке , если выполняется .А так как функция при этом должна быть непрерывной в точке , то должно быть справедливо .

Функция называется непрерывной в точке , если для всех положительных, сколь угодно малых можно указать такое положительное число , для которого выполняется неравенство для всех из отрезка .

ТЕМА 8. Производная.

ПРОИЗВОДНАЯ, ЕЁ СВОЙСТВА И ГЕОМЕТРИЧЕСКИЙ СМЫСЛ. ДИФФЕРЕНЦИАЛ. ПРОИЗВОДНАЯ ВЫСШИХ ПОРЯДКОВ


Если отношение имеет предел при этот предел называ­ют производной функции при заданном значении и записывают .

Производная функции в точке численно равна тангенсу угла, который составляет касательная к графику этой функции построенной в точке с положительным направлением с осью

Из определения ясно - в случае убывающей функции производная отрицательна. Это объясняется тем, что , если будет отрицательным. На этом свойстве производной основано исследование поведения функции на возрастание (убывание) на заданном отрезке.

Производная алгебраической суммы равна алгебраической сумме производных. .

Производная произведения равна .

Если функция имеет в точке производную и функция имеет в точке производную , тогда сложная функция имеет в точке производную, равную

Если имеет в точке производную, отличную от нуля, тогда в этой точке обратная функция также имеет производную и имеет место соотношение .

Дифференцируя производную первого порядка, можно получить производную второго порядка, а, дифференцируя полученную функцию, получаем производную третьего порядка и т.д.

Пример 1. ; ; ; ...; ; .

Пример 2. ; ; ; ; . Так как , то можно предположить, что в данном случае функцию можно дифференцировать бесконечное количество раз.

Пример 3. . . Как и во втором примере, эта функция дифференцируема бесконечное количество раз.

Пример 4. . ; ; ; … ; ...Как следует из приведенных примеров, разные функции ведут себя по-разному при многократном дифференцировании. Одни имеют конечное количество производных высших порядков, другие – переходят сами в себя, а третьи, хотя и дифференцируемы бесконечное количество раз, но порождают новые функции, отличные от исходной. Однако все сформулированные теоремы о производных первых порядков выполняются для производных высших порядков.

ТЕМА 9. Экстремум функции.

ВОЗРАСТАНИЕ (УБЫВАНИЕ) ФУНКЦИЙ

Функция называется возрастающей на некотором промежутке , если на этом промежутке большему значению независимой переменной соответствует большее значение функции, т.е. если и , то выполняется .

Характеристики

Тип файла
Документ
Размер
3,42 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6549
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее