Logika (674808), страница 3

Файл №674808 Logika (Экзаменационные билеты) 3 страницаLogika (674808) страница 32016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Закон косвенного доказательства позволяет заключить об истинности какого-то высказывания на основании того, что отрицание этого высказывания влечет противоречие. Например, «Если из того, что 17 не является простым числом, вытекает как то, что оно делится на число отличное от самого себя и единицы, так и то, что оно не делится на такое число, то 17 есть простое число. Символически закон косвенного доказательства записывается так:

(~A→~B)&(~A→~B)→A, если (если не-А, то В) и (если не-А, то не-В), то А.

Законом косвенного доказательства обычно называется и формула:

(~A→(B& ~B))→A, если (если не-А, то В и не-В), то А. К примеру: «Если из того, что 10 не является простым числом, вытекает, что оно делится и не делится на 2, то 10 – четное число».

12. Законы де Моргана

Законы де Моргана позваляют переходить от утверждений с союзом «и» к утверждениям с союзом «или», и наоборот:

~ (A&B) → (~Av~ B), если неверно, что есть и первое, и второе, то неверно, что есть первое, или неверно, что есть второе:

(~ Av ~B) → ~ (A&B), если неверно, что есть первое, или неверно, что есть второе, то неверно, что есть первое и второе. Используя эти законы, от высказывания «Неверно, что изучение логики и трудно, и бесполезно» можно перейти к высказыванию «Изучение логики не является трудным, или же оно не бесполезно». Объединение этих двух законов дает закон (↔ - эквивалентность, «если и только если»):

~ (A&B) ↔ (~Av ~ B).

Словами обычного языка этот закон можно выразить так: отрицание конъюнкции эквивалентно дизъюнкции отрицаний.

Еще один закон де Моргана утверждает, что отрицание дизъюнкции эквивалентно конъюнкции отрицаний:

~ (A v B) ↔ (~A & ~B),

неверно, что есть первое или есть второе, если и только если неверно, что есть первое, и неверно, что есть второе. Например: «Неверно, что ученик знает арифметику или знает геометрию, тогда и только тогда, когда он не знает ни арифметики, ни геометрии».

На основе законов де Моргана связку «и» можно определить, используя отрицание, через «или», и наоборот:

- «А и В» означает «неверно, что не-А или не-В»,

- «А или В» означает «неверно, что не-А и не-В».

К примеру: «Идет дождь и идет снег» означает «Неверно, что нет дождя или нет снега»; «Сегодня

холодно или сыро» означает «Неверно, что сегодня не холодно и не сыро».

13. Законы транзитивности, ассоциативности и коммутативности.

Закон транзитивности в обычном языке можно передать так: когда верно, что если первое, то второе, и если второе, то третье, то верно также, что если первое, то третье. Например: «Если дело обстоит так, что с развитием медицыны появляется больше возможностей защитить человека от болезней и с увеличением этих возможностей растет средняя продолжительность жизни человека». Иначе говоря, если условием истинности первого является истинность второго и условием истинности второго – истинность третьего, то истинность последнего есть также условие истинности первого. Символически данный закон представляется формулой:

((A→B)&(B→C)) → (A→C), если (если А, то В) и (если В, то С), то (если А, то С).

Законами ассоциативности называются логические законы, позволяющие по-разному группировать высказывания, соединяемве с помощью «и», «или» и др. Операции сложения и умноженгия чисел в математике ассоциативны:

(a + b) + c = a + (b + c),

(a x b) x c = a x (b x c).

Ассоциативностью обладают также логическое сложение (дизъюнкция) и логическое умножение (конъюнкция). Символически соответствующие законы представляются так:можно опускать скобки.

(A v B) v C ↔ A v (B v C),

(A & B) & C ↔ A & (B & C).

В силу законов ассоциативности в формулах, представляющих конъюнкцию более чем двух

высказываний или их дизъюнкцию.

Законами коммутативности называют логическаие законы, позволяющие менять местами высказывания, связанные «и», «или», «если и только если» и др. Эти законы аналогичны алгебраическим законам коммутативности для умножения, сложения и др., по которым результат умножения не зависит от порядка множителей, сложения – от порядка слагаемых и т.д.

Символически законы коммутативности для конъюнкции и дизъюнкции записываются так:

(A & B) ↔ (B & A), Aи В тогда и только тогда, когда В и А;

(A v B) ↔ (B v A), А или В, если и только если В или А.

14. Категорические высказывания: структура и виды

Категорическое высказывание (категорическое суждение) – это высказывание, в котором утверждается или отрицается наличие какого-то признака у всех или некоторых предметов рассматриваемого класса. Например, в высказывании «Все динозавры вымерли» всем динозаврам приписывается признак «быть вымершими». Существует два варианта таких высказываний: утвердительный и отрицательный. Их структура:

«S есть Р» и «S не есть Р», где буква S представляет имя того предмета, о котором идет речь в высказывании, а буква Р – имя признака, присущего или не присущего этому предмету.

Предмет, о котором говорится в категорическом высказывании, называется субъектом, а его признак – предикатом. Субъект и предикат именуются терминами категорического высказывания и соединяются между собой связкой «есть» или «не есть» и т. п. Например, в высказывании «Солнце есть звезда» терминами являются «Солнце» и «звезда» (первый из них – субъект высказывания, второй – его предикат), а слово «есть» - связка.

Простые высказывания типа «S есть (не есть) Р» называются атрибутивными: в них осуществляется атрибуция (приписывание) какого-то свойства предмету.

Атрибутивным высказываниям противостоят высказывания об отношениях, в которых устанавливаются отношения между двумя или большим числом предметов: «Три меньше пяти», «Киев больше Одессы» и т. п.

В категорических высказываниях утверждается или отрицается принадлежность каких-то признаков рассматриваемым предметам и указывается, идет ли речь обо всех этих предметах или же о некоторых из них. Возможны, таким образом, четыре вида категорических высказываний.

Все S есть Р – общеутвердительное высказывание,

Некоторые S есть Р – частноутвердительное высказывание,

Все S не есть Р – общеотрицательное высказывание,

Некоторые S не есть Р – частноотрицательное высказывание.

15. Отношения между категорическими высказываниями: «логический квадрат»

Некоторые отношения между четырьмя видами категорических высказываний графически представляются так называемым логическим квадратом.

Обозначим оборот «Все... есть...» буквой a, оборот «Некоторые... есть...» буквой i, оборот «Все... не есть...» буквой е и оборот «Некоторые... не есть...» буквой о. (Каждое из этих выражений является логической постоянной.)

SaP – «Все S есть Р» - «Все жидкости упруги»,

SiP – «Некоторые S есть Р» - «Некоторые животные говорят»,

SeP – «Все S не есть Р» - «Все дельфины не есть рыбы»,

SoP – «Некоторые S не есть Р» - «Некоторые металлы не есть жидкости».

SaP противные SeP

SiP противные SoP

Противоречащие высказывания (SaP и SoP; SeP и SiP) не могут быть одновременно истинными и ложными; если одно из них истинно, то другое ложно. Если высказывание «Некоторые медведи – не бурые» истинно, то высказывание «Все медведи – бурые» ложно.

Противные высказывания (SaP и SeP), в отличие от противоречащих, могут быть вместе ложными, но не могут быть вместе истинными. Поскольку высказывание «У всех людей есть головы» истинно, то высказывание «Ни у одного человека нет головы» ложно.

Подпротивные высказывания (SiP и SoP) не могут быть одновременно ложными, но могут быть одновременно истинными. Так, если высказывание «Некоторые овцы – хищники» ложно, то высказывание «(По меньшей мере) некоторые овцы не являются хищниками» истинно. Высказывания же «Некоторые спортсмены – футболисты» и «Некоторые спортсмены не футболисты» оба истинны.

В отношении подчинения находятся попарно высказывания SaP и SiP, SeP и SoP. Из подчиняющего высказывания логически следует подчиненное: из SaP вытекает SiP и из SeP вытекает SoP. Это означает, что из истинности подчиняющего высказывания логически следует истинность подчиненного, и из ложности подчиненного следует ложность подчиняющего. К примеру, из высказывания «Все киты являются млекопитающими» следует высказывание «Некоторые киты млекопитающие».

16. Обращение и превращение категорических высказываний

Обращением называется преобразование высказывания, в результате которого субъект исходного высказывания становится предикатом результирующего, а предикат исходного – субъектом результирующего.

Превращением называется преобразование суждения в суждение, противоположное по качеству с предикатом, противоречащим предикату исходного суждения. Например:

Только люди верят в конец света

Нет человека, не верящего в гармонию мира

_______________________________________________________________

Никто из неверящих в гармонию мира не верит

в конец света

Обращение: Все, кто верят в конец света, являются людьми

Превращение: Все люди верят в гармонию мира.

Противопоставление предиката: Все, кто верят в конец света, верят в гармонию мира.

17. Категорический силлогизм: фигуры и модусы

Категорический силлогизм – это дедуктивное умозаключение, в котором из двух категорических

высказываний выводится новое категорическое высказывание.

Термины силлогизма не должны быть пустыми или отрицательными. Пример силлогизма:

Все жидкости упруги.

Вода – жидкость.

____________________________

Вода упруга.

В каждом силлогизме должно быть три термина: меньший, больший и средний. Меньшим термином называется субъект заключения («вода») – S. Большим термином именуется предикат заключения («упруга») – P. Термин, присутствующий в посылках, но отсутствующий в заключении, называется средним («жидкость») – M. Посылка, в которую входит больший термин, называется большей. Посылка с меньшим термином называется меньшей. Большая посылка записывается первой, меньшая – второй. Логическая форма приведенного силлогизма такова:

Все М есть Р.

Все S есть М.

____________________

Все S есть Р.

В зависимости от положения среднего термина в посылках (является он субъектом или предикатом в боьшей или меньшей посылках) различаются четыре фигуры силлогизма. Схематически фигуры изображаются так:



1-я фигура 2-я фигура 3-я фигура 4-я фигура

По схеме первой фигуры построен силлогизм:

Все жидкости упруги.

Вода – жидкость.

____________________________

Вода упруга.

Характеристики

Тип файла
Документ
Размер
110,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6310
Авторов
на СтудИзбе
312
Средний доход
с одного платного файла
Обучение Подробнее