47497 (665836)

Файл №665836 47497 (Криптосистеми)47497 (665836)2016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Криптосистеми

1. ОБЧИСЛЮВАЛЬНО СТІЙКІ ТА ЙМОВІРНО СТІЙКІ КРИПТОСИСТЕМИ

Криптоаналітик знає криптиосистему, може мати апаратуру, може перехоплювати криптограми. При цьому, криптоаналітик може визначити:

- Мі → Сj – ? ;

- Kij → Мі → Сj – ?

Атака при відомих парах повідомлень та криптограм

Мі → Сj; Kij – ?

Атака з вибором повідомлення

Криптоаналітик знає Мі та алгоритм зашифровування

Мі →

Алгоритм зашифровування


Kij

→ Сj

і , Сj) → Kij – ?

Атака з вибором криптограм

Розшифровування

Сj →


Kij

→ Мі

j , Мі) → Kij

Адаптивна атака

Така атака, при якій може здійснюватись зашифровування та розшифровування

Визначення обчислювально стійкої криптосистеми та умови реалізації

Обчислювально стійка криптосистема визначається як така, у якої

.

Така система може будуватись як і безумовно стійка криптосистема. У обчислювально стійких криптосистемах замість ключової послідовності Кi використовують Гi.

Процес – процес гамаутворення (шифроутворення).

Розшифровування здійснюється аналогічно з безумовно стійкою криптосистемою:

Ключ повинен породжуватись рівно ймовірно, випадково та незалежно. Як правило, більшість пристроїв працюють з бітами.

,

.

Функція Ψ, для забезпечення необхідного рівня стійкості, повинна задовольняти ряду складних умов:

  1. Період повторення повинен бути не менше допустимої величини:

  1. Закон формування гами повинен забезпечувати „секретність” гами. Тобто, Гі повинна протистояти криптоаналітику

В якості показника оцінки складності гами використовується структурна скритність:

,

,

де – повний період;

– кількість бітів, які криптоаналітик повинен одержати, щоб зробити обернення функції Ψ, тобто знайти ключ.

  1. Відновлюваність гами в просторі та часі.

  2. Відсутність колізії, тобто, співпадання відрізків гами.

Розглянута система відноситься до класу симетричних.

В якості оцінки стійкості використовується така множина параметрів

.

1. =128, 192, 256, 512

.

2. біт.

3. Безпечний час для атаки типу „груба сила”:

.

4. Відстань єдності шифру . Можна показати, що для обчислювально стійкої криптосистеми справедливо співвідношення:

,

де – умовна апостеріорна ентропія криптоаналітика;

– ентропія джерела ключів;

l – довжина зашифрованого тексту або гами;

d – збитковість мови (під надмірністю d розуміється ступінь корельованості (залежності) символів у мові і не порівняно ймовірностні їхньої появи в повідомленні);

m – розмірність алфавіту.

Криптоаналіз вважається успішним, якщо =0.

Фізичний зміст l0 – мінімальна кількість гами шифрування, яку необхідно достовірно перехопити, щоби мати можливість розв’язати задачу визначення ключа, або обернення функції Ψ. Якщо n < l0 , то однозначно повідомлення.

Імовірно стійка криптосистема відноситься до класу асиметричної:

При відомому одного з цих ключів складність повинна бути не нижче ніж субекспоненціальна

.

В залежності від виду двохключових перетворень криптоперетворення можна розділити на:

1) криптоперетворення в кільцях. Задача факторизації модуля на два простих числа:

2) криптоперетворення в полях Галуа GF(p). Задача розв’язання обернення функції:

,

де – відкритий ключ;

– первісний елемент;

– особистий ключ;

Р – просте число.

3) криптоперетворення в групах точок еліптичних кривих E(GF(q)). Задача розв’язання дискретного логарифму:

,

де d – особистий ключ;

Q – відкритий ключ;

G – базова точка;

q – поле.

2. МАТЕМАТИЧНІ МОДЕЛІ КРИПТОПЕРЕТВОРЕНЬ

Криптоперетворення розподіляються на:

- симетричні, якщо виконується умова:

,

або ключ обчислюється не нижче ніж з поліноміальною складністю;

-асиметричні, якщо виконується умова:

,

або ключ може бути обчислений при знанні іншого не нижче ніж з субекспоненційною складністю.

Поліноміальною складністю називається така складність, при якій n входить в основу:

Субекспоненційною складністю називається така складність, при якій n входить в показник:

.

Основною ознакою для таких криптоперетворень являється ключ (або ключі). Кожне криптоперетворення задається прямим і зворотнім перетворенням:

Основні асиметричні криптоперетворення по математичному базису:

  1. перетворення в полях GF(p);

  2. перетворення в кільцях NZ;

  3. перетворення на еліптичних кривих EC.

Основні симетричні криптоперетворення по математичному базису:

1) афінні:

,

де А – деяка матриця;

2) нелінійні: не можна представити у вигляді лінійної функції.

В залежності від виду симетричні криптоперетворення діляться на:

- підстановка;

- гамування;

- управляємий зсув бітів;

- перестановка і інші елементарні перетворення.

Сутність асиметричних криптоперетворень в кільці

Нехай Мі – блок інформації, який треба захистити. Представимо цей блок у вигляді числа lM. Використовується ключова пара (Ек, Dк), що породжується випадково.

Пряме перетворення:

,

де - функція Ейлера.

.

Зворотне перетворення:

,

т.ч. перетворення зворотне і однозначне.

Стійкість проти атак в кільці визначається складністю факторизації числа N на прості числа P та Q.

Сутність асиметричних криптоперетворень в полі

Нехай є просте поле Галуа GF(p). Для кожного p існує множина первісних елементів:

.

Кожний первісний елемент породжує поле:

.

Криптоперетворення пов’язані з побудуванням пари ключів. Нехай є два користувачі А та В.

А

В

ХА

ХВ

де ХА, ХВ – випадкові ключі довжиною lk;

YА, YВ – відкриті ключі.

При побудуванні використовуються властивості поля.

,

де r – сеансовий ключ.

Користувач А передає користувачу В пару . Потім користувач В обчислює:

.

Таким чином, перетворення в полі є зворотнім та однозначним.

Модель криптоаналітика заключається в тому, що необхідно знайти ХВ. Реалізуючи рівняння відносно ХВ одержимо секретний ключ. Стійкість проти атак в полі визначається складністю розв’язання рівняння .

Сутність асиметричних криптоперетворень в групі точок еліптичних кривих

За 20 років розроблено нові математичні апарати, які дозволяють ефективно розв’язувати рівняння, що реалізовані в полях та кільцях. В 90-х роках було запропоновано використовувати криптоперетворення, що базуються на перетвореннях в групі точок еліптичних кривих над полями GF(p), GF(2m), GF(pm).

Для випадку простого поля:

елементом перетворення є точка на еліптичній кривій, тобто ,що обчислюється за модулем р. Формується ключова пара:

, де .

,

де G – базова точка на еліптичній кривій порядку

QA – відкритий ключ, точка на еліптичній кривій з координатами (ха, уа).

Задача криптоаналітика знайти таємний ключ dA. Складність розв’язку цього рівняння набагато вище, ніж в полі. В полі – субекспоненційна складність, а в групі точок еліптичних кривих – експоненційна складність.

3. СИМЕТРИЧНІ КРИПТОПЕРЕТВОРЕННЯ

Застосовувані на практиці криптоперетворення розділяють на 2 класи по стійкості:

  1. обчислювально стійкі.

  2. ймовірно стійкі (доказово стійкі).

Основним показником, по якому оцінюються такого роду системи є безпечний час:

Nвар – кількість команд, операцій для рішення задачі криптоаналізу.

- продуктивність криптосистеми, вар/сек.

k – коефіцієнт кількості сек/рік

Рр – імовірність рішення задачі.

ВР і ДС повинні задовольняти. До доказово стійких перетворень відносять перетворення з відкритими ключами, з відкритим поширенням ключів і т.д. У цих системах задача криптоаналізу полягає в рішенні якоїсь іншої математичної задачі. Обчислювально стійкі системи реалізуються за рахунок застосування симетричних криптоперетворень.

У симетричних криптосистемах ключ зашифрування або збігається з ключем розшифрування, або обчислюється один з іншого з поліноміальною складністю.

Поліноміальна складність

Нехай n – розмірність вхідних даних, що підлягають криптоперетворенню і нехай t(n) є складність перетворення цих даних у сек. тактах, командах. Складність називають поліноміальної, якщо вона представлена:

- набір констант.

- експонентна складність

В даний час як функцію f реалізуючої криптоперетворення використовуються афінні шифри.

Афінне перетворення – перетворення, яке можна одержати комбінуючи рухи, дзеркальні відображення і гомотепію в напрямку координатних осей.

Гомотепія – перетворення простору чи площини щодо точки по направляючим осях з коефіцієнтами.

До афінних шифрів відносяться шифри зрушення, лінійні афінні шифри.

У потокових криптоперетвореннях об'єктами взаємодії є символи повідомлення Мi і символи ключа j, причому з використанням символів ключа формується Гi.

Характеристики

Тип файла
Документ
Размер
1,39 Mb
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6525
Авторов
на СтудИзбе
301
Средний доход
с одного платного файла
Обучение Подробнее