47371 (665779)

Файл №665779 47371 (Кодирование)47371 (665779)2016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Тема реферату: "КОДИРОВАНИЕ"

1. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ ТЕОРИИ КОДИРОВАНИЯ

Оптимальным статистическим (экономным) кодированием называется кодирование, при котором обеспечивается распределение времени на передачу отдельных символов алфавита в зависимости от априорных вероятностей их появления:

; (1)

где Cп - пропускная способность канала; pi - априорная вероятность i –й кодовой комбинации; ti -длительность i-й кодовой комбинации.

Оптимальными неравномерными кодами (ОНК) - называются коды, в которых символы алфавита кодируются кодовыми словами минима-льной средней длины.

Принципы построения оптимальных кодов:

1. Каждая кодовая комбинация должна содержать максимальное количество информации, что обеспечивает максимальную скорость передачи данных.

2. Символам первичного алфавита, имеющим наибольшую вероятность появления в сообщении, присваиваются более короткие кодовые слова, при этом, средняя длина кодовых комбинаций имеет минимально-возможную длину.

При таком кодировании избыточность кода, которая вызвана неравной вероятностью символов алфавита, сводится к минимуму (практически к нулю). Оптимальные коды являются неравномерными блочными кодами, при их построении необходимо обеспечить однозначность декодирования. Префиксным (неприводимым)- называется код, в котором ни одна кодовая комбинация не является началом другой. Для обеспечения этого свойства кодовые комбинации должны записываться от корня кодового дерева.

Возможность однозначного декодирования неравномерного кода обеспечивается выполнением требования разделимости (префиксности) кодовых комбинаций.

При неравномерном кодировании производится сжатие данных. Сжатие данных используется как при хранении данных в памяти, так и при их передаче. Оптимальное кодирование можно использовать только в каналах без помех или в случае низкой требовательности к достоверности передаваемой информации.

Существует много методов оптимального, статистического кодирования. Наиболее часто используют оптимальное кодирование по методу Шеннона - Фано и Хаффмена.

2. КОД ШЕННОНА-ФАНО

Кодирование по методу Шеннона - Фано осуществляется следующим образом:

1. Множество символов, из которых формируются сообщения, записываются в порядке убывания их априорных вероятностей.

2. Дальнейшее построение кода производится методом последовательного деления пополам. Символы сообщения разбиваются на две группы с примерно равными вероятностями (т. к. при отсутствии статистической связи между символами скорость передачи максимальна при условии равной вероятности передачи символов). Если равной вероятности в подгруппах достичь нельзя, то желательно чтобы суммарная вероятность нижней подгруппы была больше верхней.

3. Всем символам верхней группы приписывается кодовый символ 1, а символам нижней - 0. Можно наоборот, т. к. для кодовой реализации безразлично 0 или 1, но с точки зрения мощности, лучше, если в кодовой комбинации меньше единиц.

4. Затем каждая подгруппа аналогичным образом разбивается на подгруппы по возможности с одинаковыми вероятностями. Разбиение осуществляется до тех пор, пока в каждой подгруппе останется по одному символу.

Пример построения кода приведен в таблице 1.

Таблица 1

ai

pi

Разбиение

Кодовая комбинация

Длина

a 1

a2

a3

a4

1/2

1/4

1/8

1/8

}1

0 }1

0 }1

}0

1

01

001

000

2

3

3

Построенный код является префиксным.

Например: полученная кодовая последовательность 11100001 однозначно декодируется как:

1 1 1 000 1 01 => a1 a1 a1 a4 a1 a2 .

a1 a1 a1 a4 a1 a2

Применяя статистическое кодирование можно получить результат, близкий к идеальному кодированию по Шеннону.

Средняя длина кодовой комбинации, при использовании двоичного кода в качестве вторичного, равна

, (2)

где li - длина i-й комбинации; N -основание первичного кода.

Эффективность ОНК максимальна при

; . (3)

Коэффициент относительной эффективности (коэффициент использования пропускной способности) равен

. (4)

Коэффициент статистического сжатия (уменьшение количества двоичных разрядов на символ сообщения при использовании статистического кодирования по сравнению с обычным кодированием) равен

. (5)

Для рассмотренного примера при длительности символа кодовой комбинации (0 или 1) равной средняя длина и средняя длительность кодовой комбинации, соответственно равны:

Энтропия источника равна

При этом: Коэ = 1,75/1,75 = 1; Кcc = 2/1,75 = 1,14.

Скорость передачи информации

, (6)

т. е. коэффициент использования пропускной способности канала равен 1, а значит, имеет место идеальное использование канала (оптимальное статистическое кодирование).

Если подгруппы имеют не одинаковую суммарную вероятность, то коэффициент меньше 1. Для равномерного кода , при этом

.

Недостаток кода ОНК - низкая помехоустойчивость, т. к. потеря одного разряда может означать потерю символа.

3. КОД ХАФФМЕНА

Кодирование по методу Хаффмена осуществляется следующим об-разом:

1. Все подлежащие кодированию символы записываются в порядке убывания их априорных вероятностей. Если некоторые символы имеют одинаковые вероятности, то их располагают рядом в произвольном порядке.

2. Выбирают символы с минимальными вероятностями по 2 и одному приписывают 0, а другому 1.

3. Выбранные символы объединяют в промежуточные символы с суммарной вероятностью.

4. Снова находят пару символов с наименьшими вероятностями и поступают аналогично.

В таблице 2 приведен пример кодирования по методу Хаффмена для источника сообщений с заданными вероятностями символов алфавита:

x1 = 0,4; x2 = x5 = 0,2; x3 = 0,1; x4 = x6 = 0,05.

Таблица 2

Символ

pi

Граф кода Хаффмена

Код

x 1

x2

x5

x 3

x 4

x 6

0,4

0,2

0,2

0,1

0,05

0,05

1

(1,0)

1 0

(0,6)

1 0

(0,4)

1 0

(0,2)

1 0

(0,1)

0

1

01

001

0001

00001

00000

Энтропия источника равна

Средняя длина кодовой комбинации данного кода

Длина кодовой комбинации примитивного кода определяется соотношением

(7)

Округляя до ближайшего целого в большую сторону, получим l = 3.

Эффективность ОНК максимальна, если .

Коэффициент относительной эффективности равен

.

Коэффициент статистического сжатия равен

.

Неравномерный код можно передавать блоками заданной длины, а на приемной стороне декодировать всю последовательность.

Пример 1. Построить оптимальные неравномерные коды (ОНК) по методу Шеннона-Фано и по методу Хаффмена для передачи сообщений, в которых вероятности символов первичного алфавита равны:

p(a1) =0,1; p(a2) =0,07; p(a3) =0,02; p(a4) =0,17;

p(a5) =0,42; p(a6) =0,09; p(a7) =0,08; p(a8) =0,05.

Оценить эффективность каждого кода, т. е. насколько они близки к оптимальным. Определить емкость (пропускную способность) канала связи для каждого кода, если скорость передачи двоичных символов (V = 1/) равна 1000 симв/с, т.е. время передачи одного символа вторичного алфавита (двоичного символа) равна = 0,001с = 1мкс.

Решение: Построим код по методу Шеннона-Фано, используя сле-дующий алгоритм:

1. Символы сообщения располагаем в порядке убывания их априорных вероятностей.

2. Исходный ансамбль кодируемых символов разбиваем на две группы с примерно равными вероятностями (лучше, если суммарная вероятность верхней группы меньше).

3. Верхней группе присваиваем символ 1, а нижней 0.

4. Процесс деления повторяем до тех пор, пока в каждой подгруппе останется по одному символу.

Процесс построения кода приведем в таблице 3.

Таблица 3

ai

p(ai)

Разбиение

Код

li

pili

a 5

a4

a1

a6

a7

a2

a8

a3

0,42

0,17

0,10

0,09

0,08

0,07

0,05

0,02

}0

1 0 }0

}1

1 0 }0

}1

1 }0

}0

}1

0

100

101

1100

1101

1110

11110

11111

1

3

3

4

4

4

5

5

0,42

0,51

0,3

0,36

0,32

0,28

0,25

0,1

. .

Характеристики

Тип файла
Документ
Размер
697,26 Kb
Материал
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6480
Авторов
на СтудИзбе
303
Средний доход
с одного платного файла
Обучение Подробнее