EXPSIST (664977), страница 8

Файл №664977 EXPSIST (Экспертные системы. Классификация экспертных систем. Разработка простейшей экспертной системы) 8 страницаEXPSIST (664977) страница 82016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 8)

Провести от них к n указателю.



нет Являются ли да

какие-либо из Успех

дочерних вершин

целевыми?

рис.6 Блок- схема программы алгоритма полного перебора

для дерева.

4.2.2 Метод равных цен.

Могут встретится задачи, в которых решению предъявляются какие-то иные требования, отличные от требования получения наикратчайшей последовательности операторов. Присваивание дугам деревьев определенных цен (с последующим нахождением решающего пути, имеющего минимальную стоимость) соответствует многим из таких обещанных критериев. Более общий вариант метода полного перебора, называемый методом равных цен, позволяет во всех случаях найти некоторый путь от начальной вершины к целевой, стоимость которого минимальна. В то время как в выше описанном алгоритме распространяются линии равной длины пути от начальной вершины, в более общем алгоритме, который будет описан ниже, распространяются линии равной стоимости пути. Предполагается, что нам задана функция стоимости c(ni,nj), дающая стоимость перехода от вершины ni к некоторой следующей за ней вершине nj.

В методе равных цен для каждой вершины n в дереве перебора нам нужно помнить стоимость пути, построенного от начальной вершины s к вершине n. Пусть g(n)- стоимость от вершины s к вершине n в дереве перебора. В случае деревьев перебора мы можем быть уверены, что g(n) является к тому же стоимостью того пути, который имеет минимальную стоимость (т.к. этот путь единственный).

В методе равных цен вершины раскрываются в порядке возрастания стоимости g(n). Этот метод характеризуется такой последовательностью шагов:

1) Поместить начальную вершину s в список, называемый ОТКРЫТ. Положить g(s)=0.

2) Если список ОТКРЫТ пуст, то на выход подается сигнал о неудаче поиска, в противном случае переходить к следующему шагу.

3) Взять из списка ОТКРЫТ ту вершину, для которой величина g имеет наименьшее значение, и поместить ее в список ЗАКРЫТ. Дать этой вершине название n. (В случае совпадения значений выбирать вершину с минимальными g произвольно, но всегда отдавая предпочтение целевой вершине.)

4) Если n есть целевая вершина, то на выход выдать решающий путь, получаемый путем просмотра назад в соответствии с указателями; в противном случае переходить к следующему шагу.

5) Раскрыть вершину n, построив все непосредственно следующие за ней вершины. (Если таковых нет переходить к шагу (2).) Для каждой из такой непосредственно следующей (дочерней) вершины ni вычислить стоимость g(n), положив g(ni)=g(n)+c(n,ni). Поместить эти вершины вместе с соответствующими им только что найденными значениями g в список ОТКРЫТ и построить указатели, идущие назад к n.

6) Перейти к шагу (2).

Блок- схема этого алгоритма показана на рис.7. Проверка того, является ли некоторая вершина целевой, включена в эту схему так, что гарантируется обнаружение путей минимальной стоимости.

Алгоритм, работающий по методу равных цен, может быть также использован для поиска путей минимальной длины, если просто положить стоимость каждого ребра равной единице. Если имеется несколько начальных вершин, о алгоритм просто модифицируется: на шаге (1) все начальные вершины помещаются в список ОТКРЫТ. Если состояния, отвечающие поставленной цели, могут быть описаны явно, то процесс перебора можно пустить в обратном направлении, приняв целевые вершины в качестве начальных и используя обращение оператора Г.

Пуск



Поместить s в список ОТКРЫТ.

Положить g(s)=0.



нет Пуст ли да

список неудача

ОТКРЫТ?



Взять из списка ОТКРЫТ вершину

с наименьшим значением g

и поместить ее в список ЗАКРЫТ.

Обозначить ее через n.



нет Является ли n да успех

вершиной цели?



Раскрыть n. Вычислить значение g

для дочерних вершин.

Поместить эти вершины в список ОТКРЫТ.

Провести от них указатели к n.


рис.7 Блок- схема программы алгоритма равных цен для деревьев.

4.3 Метод перебора в глубину.

В методах перебора в глубину прежде всего раскрываются те вершины, которые были построены последними. Определим глубину вершины дереве следующим образом:

Глубина корня дерева равна нулю.

Глубина любой последующей вершины равна единице плюс глубина вершины, которая непосредственно ей предшествует.

Таким образом, вершиной, имеющей наибольшую глубину в дереве перебора, в данный момент служит та, которая должна в этот момент быть раскрыта.

Такой подход может привести к процессу, разворачивающемуся вдоль некоторого бесполезного пути, поэтому нужно ввести некоторую процедуру возвращения. После того как в ходе процесса строится вершина с глубиной, превышающей некоторую граничную глубину, мы раскрываем вершины наибольшей глубины, не превышающей этой границы и т.д.

Метод перебора в глубину определяется следующей последовательностью шагов:

1) Поместить начальную вершину в список, называемый ОТКРЫТ.

2) Если список ОТКРЫТ пуст, то на выход подается сигнал о неудаче поиска, в противном случае перейти к шагу (3).

3) Взять первую вершину из списка ОТКРЫТ и перенести в список ЗАКРЫТ. Дать этой вершине название n.

4) Если глубина вершины n равна граничной глубине, то переходить к (2), в противном случае к (5).

5) Раскрыть вершину n, построив все непосредственно следующие за ней вершины. Поместить их (в произвольном порядке) в начало списка ОТКРЫТ и построить указатели, идущие от них к n.

6) Если одна из этих вершин целевая, то на выход выдать решение , просматривая для этого соответствующие указатели, в противном случае переходить к шагу (2).

На рис.8 приведена блок- схема для метода перебора в глубину.


Пуск



Поместить s в список ОТКРЫТ.




нет Пуст ли да

список неудача

ОТКРЫТ?



Взять первую вершину из списка

ОТКРЫТ

и поместить ее в список ЗАКРЫТ.

Обозначить ее через n.



да Равна ли глубина нет

n граничной глубине


Раскрыть n. Вычислить значение g

для дочерних вершин.

Поместить эти вершины в список ОТКРЫТ.

Провести от них указатели к n



Являются ли

нет какие- либо да

из дочерних вершин успех

целевыми?

рис.8 Блок-схема программы алгоритма поиска в глубину для деревьев.

В алгоритме поиска в глубину сначала идет перебор вдоль одного пути, пока не будет достигнута максимальная глубина, затем рассматриваются альтернативные пути той же или меньшей глубины, которые отличаются от него лишь последним шагом, после чего рассматриваются пути, отмечающимися последними двумя шагами, и т.д.

4.4. Изменение при переборе на произвольных графах

При переборе на графах, а не на деревьях, нужно внести некоторые естественные изменения в указанные алгоритмы. В простом методе полного перебора не нужно вносить никаких изменений, следует лишь проверять, не находиться ли уже вновь построенная вершина в список ОТКРЫТ или ЗАКРЫТ по той причине, что она уже строилась раньше в результате раскрытия какой- то вершины. Если это так, то ее не нужно вновь помещать в список ОТКРЫТ.

Прежде чем делать какие- либо изменения в алгоритме перебора в глубину, нужно нужно решить, что понимать под глубиной вершины в графе. Согласно обычному определению, глубина вершины равна единице плюс глубина наиболее близкой родительской вершины, причем глубина начальной вершины предполагается равной нулю. Тогда поиск в глубину можно было бы получить, выбирая для раскрытия самую глубокую вершину списка ОТКРЫТ (без превышения граничной глубины). Когда порождаются вершины, уже имеющиеся в списке ОТКРЫТ, либо в списке ЗАКРЫТ, пересчет глубины такой вершины может оказаться необходимым.

Даже в том случае, когда перебор осуществляется на полном графе, множество вершин и указателей, построенное в процессе перебора , тем не менее образуют дерево. (Указатели указывают только на одну порождающую вершину.)

4.5. Обсуждение эвристической информации

Методы слепого перебора, полного перебора или поиска в глубину являются исчерпывающими процедурами поиска путей к целевой вершине. В принципе эти методы обеспечивают решение задачи поиска пути, но часто эти методы невозможно использовать, поскольку при переборе прийдется раскрыть слишком много вершин. Прежде чем нужный путь будет найден. Т.к. всегда имеются практические ограничения на время вычисления и объем памяти, то нужны другие методы, более эффективные. чем методы слепого перебора.

Для многих задач можно сформулировать правила, позволяющие уменьшить объем перебора. Все такие правила, используемые для ускорения поиска, зависят от специфической информации о задаче, представляемой в виде графа. Будем называть такую информацию эвристической информацией (помогающей найти решение) и называть использующие ее процедуры поиска эвристическими методами поиска. Один из путей уменьшить перебор состоит в выборе более “информированного” оператора Г, который не строит много не относящихся к делу вершин. Этот способ применим как в методе полного перебора, так и в методе перебора в глубину. Другой путь состоит в использовании эвристической информации для модификации шага (5) алгоритма перебора в глубину. Вместо того, чтобы размещать вновь построенные вершины в произвольном порядке в начале списка ОТКРЫТ, их можно расположить в нем некоторым определенным образом, зависящим от эвристической информации. Так, при переборе в глубину в первую очередь будет раскрываться та вершина, которая представляется наилучшей.

Более гибкий (и более дорогой) путь использования эвристической информации состоит в том, чтобы, согласно некоторому критерию, на каждом шаге переупорядочивать вершины списка ОТКРЫТ. В этом случае перебор мог бы идти дальше в тех участках границы, которые представляются наиболее перспективными. Для того, чтобы применить процедуру упорядочения, нам необходима мера, которая позволяла бы оценивать “перспективность” вершин. Такие меры называют оценочными функциями.

Иногда удается выделить эвристическую информацию (эвристику), уменьшающую усилия, затрачиваемые на перебор (до вершины, меньшей скажем, чем при поиске методом равных цен), без потери гарантированной возможности найти путь, обладающий наименьшей стоимостью. Чаще же используемые эвристики сильно уменьшают объем работы, связанной с перебором, ценой отказа от гарантии найти путь наименьшей стоимости в некоторых или во всех задачах.

4.5. Использование оценочных функций

Как мы уже отмечали, обычный способ использования эвристической информации связан с употреблением упорядочения перебора оценочных функций. Оценочная функция должна обеспечивать возможность ранжирования вершин- кандидатов на раскрытие- с тем, чтобы выделить ту вершину, которая с наибольшей вероятностью находится на лучшем пути к цели. Оценочные функции строились на основе различных соображений. Делались попытки определить вероятность того, что вершина расположена на лучшем пути. Предлагалось также использовать расстояние и другие меры различия между произвольной вершиной и множеством целевых вершин.

Характеристики

Тип файла
Документ
Размер
160 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее