ref (664672), страница 25

Файл №664672 ref (Распределенные алгоритмы) 25 страницаref (664672) страница 252016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 25)

(* Начало древовидного алгоритма *)

while # {q : recp[q]} > 1 do

begin receive <tok,r> from q ; recp[q] := true ;

vp := min (vp,r)

end ;

send <tok,vp> to q0 with recp[q0] ;

receive <tok,r> from q0 ;

vp := min (vp,r) ; (* decide с ответом vp *)

if vp = p then statep := leader else statep := lost ;

forall q  Neighp, q  q0 do send <tok,vp> to q

end

Алгоритм 7.1 Алгоритм выборов для деревьев.

Теорема 7.2 Алгоритм 7.1 решает задачу выбора на деревьях, используя O(N) сообщений и O(D) единиц времени.

Доказательство. Когда хотя бы один процесс инициирует выполнение алгоритма, все процессы посылают сообщения <wakeup> всем своим соседям, и каждый процесс начинает выполнение древовидного алгоритма после получения сообщения <wakeup> от каждого соседа. Все процессы завершают древовидный алгоритм с одним и тем же значением v, а именно, наименьшим идентификатором процесса. Единственный процесс с этим идентификатором закончит выполнение в состоянии лидер, а все остальные процессы - в состоянии проигравший.

Через каждый канал пересылается по два сообщения <wakeup> и по два сообщения <tok,r>, откуда сложность сообщений равна 4N-4. В течение D единиц времени после того, как первый процесс начал алгоритм, каждый процесс послал сообщения <wakeup>, следовательно, в течение D+1 единиц времени каждый процесс начал волну. Легко заметить, что первое решение принимается не позднее, чем через D единиц времени после начала волны, а последнее решение принимается не позднее D единиц времени после первого, откуда полное время равно 3D+1. Более тщательный анализ показывает, что алгоритм всегда завершается за 2D единиц времени, но доказательство этого оставлено читателю; см. Упражнение 7.2.

Если порядок сообщений в канале может быть изменен (т.е. канал - не FIFO), процесс может получить сообщение <tok,r> от соседа прежде чем он получил сообщение <wakeup> от этого соседа. В этом случае сообщение <tok,r> может быть временно сохранено или обработано как сообщения <tok,r>, прибывающие позднее.

Количество сообщений может быть уменьшено с помощью двух модификаций. Во-первых, можно устроить так, чтобы не-инициатор не посылал сообщение <wakeup> процессу, от которого он получил первое сообщение <wakeup>. Во-вторых, сообщение <wakeup>, посылаемое листом, может быть объединено с сообщением <tok,r>, посылаемым этим листом. С этими изменениями количество сообщений, требуемое алгоритмом, уменьшается до 3N-4+k, где k - количество нелистовых стартеров [Tel91b, с.139].

Выбор с помощью фазового алгоритма. Фазовый алгоритм можно использовать для выбора, позволив ему вычислять наименьший идентификатор за одну волну, как в Теореме 6.12.

Теорема 7.3 С помощью фазового алгоритма (Алгоритм 6.7) можно провести выбор в произвольных сетях, используя O(D*|E|) сообщений и O(D) единиц времени.

Алгоритм Пелега [Peleg; Pel90] основан на фазовом алгоритме; он использует O(D*|E|) сообщений и O(D) времени, но не требует знания D, т.к. включает в себя вычисление диаметра.

Выбор с помощью алгоритма Финна. Алгоритм Финна (Алгоритм 6.9) не требует, чтобы диаметр сети был известен заранее. Длина O(N*|E|) сообщений, используемых в алгоритме Финна, гораздо больше, чем допускаемая предположениями в этой главе. Следовательно, каждое сообщение в алгоритме Финна должно считаться за O(N) сообщений, откуда сложность сообщений составляет O(N2|E|).

7.2 Кольцевые сети

В этом разделе рассматриваются некоторые алгоритмы выбора для однонаправленных колец. Задача выбора в контексте кольцевых сетей была впервые изложена ЛеЛанном [LeLann; LeL77], который также дал решение со сложностью сообщений O(N2). Это решение было улучшено Чангом (Chang) и Робертсом (Roberts) [CR79], которые привели алгоритм с наихудшей сложностью O(N2), но со средней сложностью только O(N logN). Решения ЛеЛанна и Чанга-Робертса обсуждаются в Подразделе 7.2.1. Вопрос о существовании алгоритма с наихудшей сложностью O(N logN) оставался открытым до 1980 г., когда такой алгоритм был приведен Hirschberg и Sinclair [HS80]. В отличие от более ранних решений, в решении Hirschberg-Sinclair требуется, чтобы каналы были двунаправленными. Предполагалось, что нижняя граница для однонаправленных колец равна (N2), но Petersen [Pet82] и Dolev, Klawe и Rodeh [DKR82] независимо друг от друга предложили решение, составляющее O(N log N) для однонаправленного кольца. Это решение рассматривается в Подразделе 7.2.2.

Алгоритмы были дополнены соответствующими нижними границами примерно в то же время. Нижняя граница для наихудшего случая для двунаправленных колец, равная  0.34N logN сообщений, была доказана Бодлендером [Bodlaender; Bod88]. Pachl, Korach и Rotem [PKR84] доказали нижние границы в (N logN) для средней сложности, как для двунаправленных так и для однонаправленных колец. Их результаты по нижним границам будут рассмотрены в Подразделе 7.2.3.

7.2.1 Алгоритмы ЛеЛанна и Чанга-Робертса

В алгоритме ЛеЛанна [LeL77] каждый инициатор вычисляет список идентификаторов всех инициаторов, после чего выбирается инициатор с наименьшим идентификатором. Каждый инициатор посылает маркер, содержащий его идентификатор, по кольцу, и этот маркер передается всеми процессами. Предполагается, что каналы подчиняются дисциплине FIFO, и что инициатор должен сгенерировать свой маркер до того, как он получит маркер другого инициатора. (Когда процесс получает маркер, он после этого не инициирует алгоритм.) Когда инициатор p получает свой собственный маркер, маркеры всех инициаторов прошли через p, и p выбирается лишь в том случае, если p - наименьший среди инициаторов; см. Алгоритм 7.2.

var Listp : set of P init {p} ;

statep ;

begin if p - инициатор then

begin statep := cand ; send <tok,p> to Nextp ; receive <tok,q> ;

while q  p do

begin Listp := Listp  {q} ;

send <tok,q> to Nextp ; receive <tok,q> ;

end ;

if p = min (Listp) then statep := leader

else statep := lost

end

else repeat receive <tok,q> ; send <tok,q> to Nextp ;

if statep = sleep then statep := lost

until false

end

Алгоритм 7.2 Алгоритм выбора ЛеЛанна.

Теорема 7.4 Алгоритм ЛеЛанна (Алгоритм 7.2) решает задачу выбора для колец, используя O(N2) сообщений и O(N) единиц времени.

Доказательство. Так как порядок маркеров в кольце сохраняется (из предположения о каналах FIFO), и инициатор q отправляет <tok,q> до того как получит <tok,p>, то инициатор p получает <tok,q> прежде, чем вернется <tok,p>. Отсюда следует, что каждый инициатор p заканчивается со списком Listp, совпадающим с множеством всех инициаторов, и единственным выбираемым процессом становится инициатор с наименьшим идентификатором. Всего получается не больше N маркеров и каждый делает N шагов, что приводит к сложности сообщений в O(N2). Не позднее чем через N-1 единицу времени после того, как первый инициатор отправил свой маркер, это сделали все инициаторы. Каждый инициатор получает свой маркер обратно не позднее, чем через N единиц времени с момента генерации этого маркера. Отсюда следует, что алгоритм завершается в течение 2N-1 единиц времени.

Все не-инициаторы приходят в состояние проигравший, но навсегда остаются в ожидании сообщений <tok,r>. Ожидание может быть прервано, если лидер посылает по кольцу специальный маркер, чтобы объявить об окончании выбора.

Алгоритм Чанга-Робертса [CR79] улучшает алгоритм ЛеЛанна, устраняя из кольца маркеры тех процессов, для которых очевидно, что они проиграют выборы. Т.е. инициатор p удаляет из кольца маркер <tok,q>, если q > p. Инициатор p становится проигравшим, когда получает маркер с идентификатором q < p, или лидером, когда он получает маркер с идентификатором p; см. Алгоритм 7.3.

var statep ;

begin if p - инициатор then

begin statep := cand ; send <tok,p> to Nextp ;

repeat receive <tok,q> ;

if q = p then statep := leader

else if q < p then

begin if statep = cand then statep := lost ;

send <tok,q> to Nextp

end

until statep = leader

end

else repeat receive <tok,q> ; send <tok,q> to Nextp ;

if statep = sleep then statep := lost

until false

end

(* Только лидер завершает выполнение программы. Он передает сообщение всем процессам, чтобы сообщить им идентификатор лидера и завершить их *)

Алгоритм 7.3 Алгоритм выбора Чанга-Робертса.

Теорема 7.5 Алгоритм Чанга-Робертса (Алгоритм 7.3) решает задачу выбора для колец, используя (N2) сообщений в наихудшем случае и O(N) единиц времени.

Доказательство. Пусть p0 - инициатор с наименьшим идентификатором. Все процессы являются либо не-инициаторами, либо инициаторами с идентификаторами большими p0, поэтому все процессы передают дальше маркер <tok,p0>, отправленный p0. Следовательно, p0 получает свой маркер обратно и становится выбранным.

Не-инициаторы не могут быть выбраны, т.к. все они приходят в состояние проигравший самое позднее, когда через них передается маркер p0. Инициатор p с p > p0 не может быть выбран; p0 не передаст дальше маркер <tok,p>, поэтому p никогда не получит свой собственный маркер. Такой инициатор p приходит в состояние проигравший самое позднее, когда через него передается маркер <tok,p0>. Таким образом доказано, что алгоритм решает задачу выбора.

Рис.7.4 Наихудший случай для алгоритма Чанга-Робертса.

Всего используется не более N различных маркеров и каждый маркер делает не более N переходов, что подтверждает границу сложности сообщений O(N2). Чтобы показать, что в самом деле можно использовать (N2) сообщений, рассмотрим начальную конфигурацию, где все идентификаторы расположены в возрастающем порядке вдоль кольца (см. Рис. 7.4) и каждый процесс является инициатором. Маркер каждого процесса удаляется из кольца процессом 0, таким образом маркер процесса i совершает N-i переходов, откуда следует, что количество пересылок сообщений равно .

Алгоритм Чанга-Робертса не улучшает алгоритм ЛеЛанна в отношении временной сложности или наихудшего случая сложности сообщений. Улучшение касается только среднего случая, где усреднение ведется по всевозможным расположениям идентификаторов вдоль кольца.

Теорема 7.6 Алгоритм Чанга-Робертса в среднем случае, когда все процессы являются инициаторами, требует только O(N logN) пересылок сообщений.

Доказательство. (Это доказательство основано на предложении Friedemann Mattern.)

Предположив, что все процессы являются инициаторами, вычислим среднее количество пересылок маркера по всем круговым расположениям N различных идентификаторов. Рассмотрим фиксированное множество из N идентификаторов, и пусть s будет наименьшим идентификатором. Существует (N-1)! различных круговых расположений идентификаторов; в данном круговом расположении пусть pi - идентификатор, находящийся за i шагов до s; см. Рис. 7.5.

Рис.7.5 Расположение идентификаторов на кольце.

Чтобы вычислить суммарное количество пересылок маркера по всем расположениям, вычислим сначала суммарное количество пересылок маркера <tok,pi> по всем расположениям, а потом просуммируем по i. Маркер <tok,s> при любом расположении передается N раз, следовательно, он пересылается всего N(N-1)! раз. Маркер <tok,pi> передается не более i раз, так как он будет удален из кольца, если достигнет s. Пусть Ai,k - количество циклических расположений, при которых <tok,pi> передается ровно k раз. Тогда суммарное число пересылок <tok,pi> равно .

Характеристики

Тип файла
Документ
Размер
5,45 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6513
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее