Dipl2k (664499), страница 2

Файл №664499 Dipl2k (Разработка САПР трубчатых реакторов для производства малеинового ангидрида) 2 страницаDipl2k (664499) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

С этим фактом необходимо считаться при выяснении возможности применения в производстве малеинового ангидрида других углеводородов, в том числе и многокомпонентных продуктов каменноугольного или нефтяного происхождения. Опыт применения бензола, содержащего в качестве примесей метилбензолы, показал, что в этом случае для обеспечения полноты окисления исходного сырья температуру процесса приходится поддерживать на 5—60С выше, чем при окислении бензола, не содержащего , примеси метилбензолов.

Основной примесью товарного бензола марки В по ГОСТ 10204—62 являются метилбензолы. Для определения теплового эффекта процесса окисления бензола марки В в малеиновый ангидрид принимаем следующие допущения:

1) состав исходного продукта : бензол – 92%, метилбензолы – 7%, прочие органические примеси – 1%;

2) при окислении 50% метилбензолов превращается в малеиновый ангидрид и 50% сгорает;

3) прочие органические примеси, присутствующие в исходном бензоле, полностью сгорают;

4) теплота сгорания органических примесей равна 10000 ккал/кг.

Отсюда тепловой эффект процесса окисления 1 кг бензола марки В в малеиновый ангидрид (расчет при стандартной температуре 20°С) будет равен:

4111,7*0,92+4067*0,07*0,5+9317*0,07*0,5+10000*0,01=4349ккал Это в 1,05 раза больше, чем при окислении 1 кг 100%-ного бензола.

При степени превращения бензола в малеиновый ангидрид, равной 0,85, из 1 кг 100%-ного бензола образуется малеинового ангидрида: 148.12/128.17*85=0,98кг, где 148,12 и 128,17 — соответственно молекулярные веса малеинового ангидрида и бензола.

При окислении 1 кг бензола марки В при той же степени превращения бензола и при степени превращения метилбензолов во малеиновый ангидрид, равной 0,5, образуется малеинового ангидрида 0.94 кг.

Поэтому для получения того же количества малеинового ангидрида при переходе от 100%-ного бензола к бензолу марки В придется израсходовать сырья больше в 0,98:0,94 = 1,04 раза.

Следовательно, суммарный тепловой эффект в пересчете на единицу количества малеинового ангидрида при окислении бензола марки В будет в 1,05.1,04= 1,1 раза больше, чем при окислении 100%-ного бензола.

Также необходимо учитывать степень превращения исходного вещества в различные продукты окисления. Если в сырье имеются какие-либо примеси, не образующие при окислении малеиновый ангидрид, то процесс ведут таким образом, чтобы добиться, возможно, более полного сгорания их. В противном случае не окисленные или окисленные не полностью примеси будут загрязнять готовый продукт и затруднять его очистку.

При возрастании молекулярного веса исходного, углеводорода тепловой эффект реакции окисления увеличивается.

Тепловой эффект реакции оказывает влияние на производительность контактного аппарата при проведении процесса в стационарном слое катализатора. В этом случае относительно низкий коэффициент теплоотдачи от газового потока к стенке трубы ограничивает скорость теплоотвода. Поэтому при переработке сырья, окисление которого протекает с выделением большого количества тепла, приходится снижать нагрузку по сырью. Это дает возможность поддерживать заданную температуру процесса, но влечет за собой снижение производительности аппарата. При проведении процесса в псевдоожиженном слое катализатора снижать нагрузку по сырью не приходится, поскольку отвод тепла из зоны катализатора не представляет затруднений. Температура процесса парофазного каталитического окисления ароматических углеводородов в значительной степени зависит от природы исходного углеводорода и типа применяемого катализатора. В промышленных реакторах парофазное каталитическое окисление ароматических углеводородов в малеиновый ангидрид проводят при З80—435°С. Более высокая температура процесса контактирования поддерживается при использовании плавленой пятиокиси ванадия (425—435°С). Более низкая температура (250-285°С) характерна для ванадий-калий-сульфатного катализатора.

Температура реакции в значительной степени определяет выбор не только хладагента, но и материала аппарата. До 400°С устойчива обычная сталь. Для работы при более высокой температуре детали реакторов, соприкасающиеся с реакционной парогазовой смесью, следует изготавливать из легированных сталей типа хромоникелевых.

Вследствие высокой экзотермичности процесса окисления бензола в малеиновый ангидрид одной из основных проблем при конструировании контактных аппаратов является максимальная интенсификация отвода тепла из зоны катализатора и обеспечение изотермичности в ней.

Хладагенты.

Хладагенты, применяемые в реакторах для отвода тепла, выделяющегося в процессе окисления, должны обладать определенными свойствами. Требуется, чтобы они были стабильными при температуре реакции, не корродировали материал аппарата, были огне- и взрывобезопасными. В практике промышленного производства малеинового ангидрида в настоящее время определились следующие хладагенты: расплав солей, кипящая ртуть, вода, свинец или его сплавы, воздух. Каждый из этих хладагентов имеет недостатки, с которыми приходится считаться. Однако все они отвечают указанным необходимым требованиям. Более подробно свойства перечисленных хладагентов рассматриваются ниже.

Наиболее часто для отвода тепла реакции используют расплав солей, представляющий собой смесь нитритов и нитратов калия и натрия, например смесь, состоящую из 7% NaNO3, 40% NaNO2 и 53% KNO3. Применяют также смесь 45% NaNO2 и 55% КNО3, имеющую температуру плавления 141,6°С. Нитриты при контакте с кислородом воздуха при высокой температуре окисляются с образованием нитратов. Увеличение содержания нитратов приводит к повышению температуры плавления смеси до 160°С и выше. Практически при достижении этой температуры плавления смесь солей следует заменять. Для уменьшения скорости окисления расплав солей отделяют от воздуха с помощью «подушки» из азота или водяного пара. В этих условиях расплав может эксплуатироваться без замены в течение двух лет. В присутствии расплава углеродистая сталь корродирует лишь при температуре, превышающей 450° С. При температурах, близких к температуре процесса контактирования, вязкость расплава относительно низкая. Это дает возможность перекачивать его насосами по трубопроводам.

За рубежом в качестве хладагента довольно широко применяют кипящую ртуть. Ее существенным преимуществом является постоянство температуры и относительно высокий коэффициент теплоотвода от охлаждаемой стенки. Эти факторы позволяют интенсифицировать процесс отвода тепла из катализаторного пространства. Для увеличения коэффициента теплоотвода в ртуть добавляют натрий. Образующаяся амальгама натрия обладает лучшей смачивающей способностью. При атмосферном давлении ртуть кипит при 356,9° С. Для повышения температуры кипения ртути емкость с хладагентом заполняют азотом, находящимся под некоторым давлением. Изменяя давление азота в системе, регулируют температуру кипения ртути. К преимуществам кипящей ртути следует отнести также возможность отвода большого количества тепла относительно небольшим количеством хладагента за счет использования скрытой теплоты парообразования. Широкое применение ртути ограничивается ее токсичностью и высокой стоимостью.

В некоторых реакторах в качестве хладагента применяют воду. В этом случае получают пар, который потом можно использовать. Преимущества использования воды в качестве хладагента общеизвестны и не нуждаются в рассмотрении. Некоторым недостатком применения воды является необходимость располагать теплообменивающие элементы, работающие под давлением, непосредственно внутри реактора.

В реакторах старой конструкции для отвода тепла реакции в качестве хладагента применяли свинец (или его сплавы). У этого хладагента имеется ряд существенных недостатков: высокая температура плавления ( что затрудняет его загрузку и перекачивание); токсичность; способность окисляться на воздухе при высокой температуре с образованием окислов, переходящих в верхние слои расплава и уменьшающих и без того низкий коэффициент теплоотвода от охлаждаемой поверхности к хладагенту; высокая стоимость. В современных системах свинец не применяют.

В качестве хладагента используют также воздух, который пропускают через трубки, погруженные в расплав солей. В некоторых конструкциях применяют обдувание. воздухом наружных стенок реакторов. Охлаждение воздухом не обеспечивает интенсивного отвода тепла из реактора вследствие низкого коэффициента теплоотдачи от стенок катализаторных камер или трубок к воздуху и низкой теплоемкости этого хладагента.

Катализаторы.

В качестве катализаторов парофазного каталитического окисления бензола в малеиновый ангидрид изучались различные вещества, в том числе окислы многих металлов (V2O5, МоО3, MgО, Аl203, SiO2, TiO2, ZnO)/4/. Однако наиболее избирательным и достаточно активным катализатором оказалась только пятиокись ванадия V2O5. В настоящее время в промышленности применяют либо пятиокись ванадия, либо сложные катализаторы, в состав которых в качестве основного активного компонента входит пятиокись или соли ванадия.

Пятиокись ванадия V2O5 представляет собой ромбические кристаллы красного или красно-желтого цвета, плавящиеся при 690°С. При температуре выше 700°С пятиокись ванадия заметно испаряется с частичной диссоциацией по реакции:

2V2O5 —> 4VO2+O2

Водный раствор ее окрашен в желтый цвет и имеет кислую реакцию. Пятиокись ванадия легко растворяется в щелочах с образованием ванадатов. При восстановлении пятиокиси ванадия образуются двуокись ванадия VO2 (сине-голубые кристаллы; т. пл. 1545°С) и трехокись ванадия V2O3 (блестящие черные кристаллы; т. пл. 1970°С).

Пятиокись ванадия получают разложением вандата аммония при высокой температуре 400°С с последующим нагреванием до 690°С. Пятиокись ванадия выпускается трех марок в соответствии с ТУЦМ 4566—55: «химически чистая» (х. ч.), «чистая для анализа» (ч. д. а.) и «чистая» (ч.).

Катализатор, предназначенный для загрузки в реакторы, готовят следующим образом. Свежую или отработанную пятиокись ванадия расплавляют в графитовых тиглях. Расплав выливают на стальные противни размером 20х10х2 см, где он застывает плотным слоем. Толщину слоя выбирают в зависимости от требуемых размеров частиц катализатора. Застывшую массу измельчают до частиц размером 5—7 мм. Полученные таким образом кусочки просеивают через два сита с близкими по размеру отверстиями (в первом сите отверстия крупнее). Остаток на первом сите и фракцию, просеявшуюся через второе сито, собирают отдельно и подвергают вторичной переплавке и измельчению. Частицы, не прошедшие через второе сито, имеют достаточно близкие линейные размерили могут применяться для заполнения контактных трубок.

Преимуществом плавленой пятиокиси ванадия как катализатора является ее высокая производительность, достигающая 275 г бензола в час на 1 кг катализатора, а недостатком — относительно низкий выход малеинового ангидрида — порядка 72—73% (на 10—15% ниже выхода на смешанных ванадиевых катализаторах). Поэтому в настоящее время почти везде отказались от применения чистой пятиокиси ванадия и отдают предпочтение катализаторам, обеспечивающим больший выход продукта.

Степень превращения бензола в побочные продукты в стационарном слое плавленой пятиокиси ванадия характеризуется следующими цифрами: в 1,4-бензохинон превращается 2,5—4% исходного бензола, в малеиновый ангидрид 9—11%; сгорает и переходит в другие продукты 3—5%.

Известно также применение катализатора, представляющего собой пятиокись ванадия (примерно 10%), осажденную на носителе (корунд, кизельгур, пемза).

Для приготовления такого катализатора носитель, пропитанный водным раствором вандата аммония, прокаливают на воздухе при 400—500°С. В результате термического разложения вандата аммония в присутствии кислорода воздуха образуются пятиокись ванадия, аммиак и вода. Аммиак и пары воды улетучиваются, а пятиокись ванадия остается на носителе.

Этот катализатор также отличается высокой производительностью, но по выходу малеинового ангидрида существенно уступает смешанному катализатору.

Смешанный ванадий-калий-сульфатный катализатор имеет значительно меньшую производительность по сравнению с плавленой пятиокисью ванадия, но обеспечивает выход малеинового ангидрида порядка 85—88% (в расчете на очищенный продукт выход составляет 83—84%). Поэтому катализаторы такого типа широко применяются в промышленности. Катализатор представляет собой силикагель, пропитанный раствором смеси сульфатов ванадила и калия. Смешанный ванадий-калий-сульфатный катализатор готовят, например, следующим образом. Предварительно получают исходные компоненты: силикагель и раствор сульфата ванадила. Для приготовления силикагеля раствор силиката калия смешивают с серной кислотой. Полученную массу размалывают в мельнице и подщелачивают аммиаком до рН 8,5. Выделившийся осадок кремневой кислоты отфильтровывают и сушат при 100-110° С. Сухую кремневую кислоту размалывают на дезинтеграторе и смешивают с раствором сульфата ванадила, который получают взаимодействием сернистого газа с пятиокисью ванадия в водном растворе серной кислоты Пасту формуют в виде цилиндриков диаметром 4 мм и высотой 4 мм и сушат их при 50—60°С. Затем температуру сушки повышают до 130°С, после чего катализатор прокаливают в токе воздуха при 430°С. Полученный таким образом катализатор содержит 10% V2O3, 60-65% SiО2 и 20-25% K2SO4.

Характеристики

Тип файла
Документ
Размер
1,11 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6521
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее