30353-1 (663149), страница 2
Текст из файла (страница 2)
Блок оценки состояния [Жданов7] (БОС) вырабатывает интегральную оценку качества состояния ОУ St. Оценка St используется для расчета оценки (веса) pi каждого из вновь сформированных образов некоторым статистическим способом. В свою очередь, St функционально зависит от оценок pi распознанных образов. Имеется некоторое множество изначально сформированных и оцененных образов. Оценка St используется также для расчета темпа принятия решений.
Блок выбор действия [Жданов4-6] или, в дальнейшем, блок принятия решений (БПР) реализует процедуру принятия решения, основанную на анализе текущей ситуации, целевых функций, содержимого БЗ, а также оценки текущего значения оценки St. Фактическая информация о текущей ситуации представлена множеством образов, распознанных в текущий момент блоком ФРО, а информация о качестве текущего состояния представлена оценкой St. Множество распознанных образов определяет в БЗ тот ее раздел, который адекватен текущей ситуации (те знания, которые истинны в текущих условиях). В соответствии с целевой функцией, предполагающей стремление УС к улучшению качества состояния ОУ, УС выбирает по БЗ то действие, которое имеет максимальную сумму оценок вызываемых и вытесняемых образов. Из множества выходных воздействий, соответствующего выбранному действию Yj, конкретное выходное воздействие выбирается случайным способом, что соответствует второй целевой функции, предусматривающей стремление к получению новых знаний.
Блок определение времени принятия решения определяет глубину просмотра БЗ в зависимости от текущей оценки St. Чем выше значение St, тем больше образов (в порядке убывания модуля их веса) может учесть УС при принятии решения, тем меньше темп принятия решений. При моделировании этот блок не использовался и в данной работе рассматриваться не будет.
В УС могут быть средства для априорного анализа последствий альтернативных выбираемых действий на несколько шагов вперед.
Таков в самых общих чертах алгоритм управления, реализуемый УС в методе ААУ. Основные свойства процесса управления состоят в том, что УС автоматически накапливает эмпирические знания о свойствах предъявленного ей объекта управления и принимает решения, опираясь на накопленные знания. Качество управления растет по мере увеличения объема накопленных знаний. Заметим также, что управление состоит не в том, что УС реагирует на входную информацию (в определенном смысле - отрицательная обратная связь), а в том, что УС постоянно активно ищет возможный в текущих условиях способ улучшить состояние ОУ (положительная обратная связь). Тем самым УС ААУ обладает внутренней активностью.
При создании приложений может быть целесообразным использование УС ААУ для управления только в тех областях пространства признаков, в которых ранее используемые методы неэффективны. Другими словами, полезно разделить признаковое пространство на две области: на область, для которой имеется априорная информация о свойствах ОУ, и в которой можно применить подходящую детерминированную систему управления, и на область, в которой нет априорной информации о свойствах ОУ, где требуется адаптация в реальном времени управления, в этой области целесообразно управление по методу ААУ.
1.4. Основные понятия и обозначения.
Каждый вход и выход блока среды U представляется в математической модели, вообще говоря, случайным вектором, а совокупность случайных векторов, параметризованных временем , образуют процесс. Кроме того, выделим вторую категорию процессов, в которую входят процессы, сформированные параметризованными СВ - выходами внутренних элементов блоков УС. Например, для ФРО и, вообще, всех блоков, состоящих из нейронов, это выходы всех нейронов. В полной математической модели среды U, процесс, представляющий выходы всех нейронов УС и выходы внутренних блоков среды W , назовем процессом среды U.
В дальнейшем мы будем пользоваться следующими обозначениями:
T – конечный временной интервал жизни системы;
- параметр времени;
- начальный момент времени работы УС;
– входной процесс, входной процесс для ФРО, а значит и для УС;
– i – ая компонента
;
- реализация входного процесса, или входной фильм, определенный на интервале времени
;
– i – ая компонента
;
– процесс среды, выход блока среды W;
– i – ая компонента
;
– процесс ФРО, совокупность выходов всех нейронов блока ФРО на интервале
;
– i - ая компонента
;
– процесс управляющих воздействий на среду
со стороны УС, где
Y – множество допустимых воздействий на среду со стороны УС;
F – множество образов аппарата ФРО.
1.5. Алгебра образов.
В качестве алгебраических операций над образами мы будем использовать операции трехзначной логики, которая является расширением обычной логики с двумя значениями: истина и ложь, обозначаемые далее как 1 и 0 соответственно, и имеет третье значение: неопределенность или . Здесь приведены таблицы для операций трехзначной логики. Первый столбец содержит значения первого аргумента, первая строка – второго.
| 1 | 0 |
|
1 | 1 | 0 |
|
0 | 0 | 0 | 0 |
|
|
|
|
Таблица 1.5.1
| 1 | 0 |
|
1 | 1 | 1 | 1 |
0 | 1 | 0 |
|
|
|
|
|
Таблица 1.5.2
| 1 | 0 |
|
1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 |
|
|
|
|
Таблица 1.5.3
Отрицание для неопределенности дает неопределенность, для остальных значений – то же самое, что и в двузначной логике. Для удобства мы полагаем, что результат операции в момент
есть неопределенность по определению.
2. Моделирование среды.
Для экспериментальной проверки метода автономного адаптивного управления необходимо создать математическую модель среды, достаточную для имитации реакции и поведения реальной среды на некотором уровне, приемлемом для данной управляющей системы. Но проверка является не единственной задачей, решаемой с помощью модели среды. Во-первых, если на начальном этапе в базе знаний УС нет знаний, ее необходимо наполнить начальными данными. Возможны случаи, когда получение исходных знаний невозможно во время реальной работы УС, поскольку оно происходит методом проб и ошибок и существует реальная угроза гибели всей системы. Поэтому начальное обучение в таких случаях необходимо проводить “на стенде”, т.е. с моделью среды. Естественно, чем ближе модель к свойствам реальной среды, тем лучше обучится УС и тем выше вероятность выживания системы. Моделировать среду можно множеством способов. Например, сделать макет объекта управления, поместить его в условия, близкие к тем, где он предназначен работать и дать ему возможность обучаться, пока у экспериментаторов не будет уверенности в живучести аппарата и в способности к адаптации в том диапазоне внешних условий, где он предназначен работать. Но на пути создания реальной действующей системы возможно несколько промежуточных этапов. Представим, что система создается “с нуля” и известна только некоторая априорная информация о среде и, возможно, какие-то представления о законах управления. Создавать сразу действующий макет дорого, поскольку на данном этапе даже не известно, какие образы УС должна уметь распознавать, и, возможно, придется делать несколько эспериментальных прототипов. Для исследования данного вопроса предлагается смоделировать среду, например, с помощью ЭВМ.
Как одну из моделей среды для исследований свойств ААУ мы предлагаем взять конечный автомат [КА]. КА является широко известным, хорошо изученным, понятным и удобным при моделировании среды объектом по следующим соображениям: 1) различные состояния среды естественным образом отображаются в состояния КА; 2) переходы из одного состояния среды в другое под воздействием УС и других объектов естественным образом отображаются в переходы КА между состояниями при чтении входного слова. Отметим, что среди известных и распространенных КА наиболее подходящими для модели являются автоматы Мура и недетерминированные автоматы Рабина-Скотта или НРС-автоматы. Правда, модели, основанные на первых, нуждаются в дополнительном введении стохастических источников, а НРС-автоматы нуждаются в модификации, поскольку реальные среды являются недетерминированными объектами. Более того, недетерминированность модели среды необходима для обучения УС. В самом деле, если бы реакция среды была полностью детерминированной и зависела только от воздействий на нее УС, то УС, найдя первый закон управления, использовала бы только его при выборе управляющих воздействий, так как по критериям системы управления лучше использовать хоть какой-нибудь закон управления и получить относительно гарантированный результат, чем продолжать поиски методом проб и ошибок. Получился бы замкнутый порочный круг: система воздействует на среду только одним способом, среда детерминированно реагирует на это воздействие, УС видит только одну реакцию (которая может быть не самой лучшей) и пытается вызвать только эту реакцию. Избежать таких “зацикливаний” можно посредством моделирования недетеминированной реакции среды.
Приведем определение автоматов Мура [КА] и введем модифицированные НРС-автоматы.