25122 (654612), страница 2
Текст из файла (страница 2)
Очевидно, что для определения элементов взаимного ориентирования необходимо измерить на стереопаре снимков не менее 5 точек.
В качестве примера рассмотрим определение элементов взаимного ориентирования by, bz, 2’, 2’, 2’.
В связи с тем, что уравнения ( 4.3) не линейны, их предварительно приводят к линейному виду и переходят к уравнению поправок:
. ( 1)
В уравнении поправок коэффициенты ai частные производные от функции ( 4.3) по соответствующим аргументам, а ℓ– свободный член.
Значения коэффициентов аi в уравнении ( 1) вычисляют по следующим известным значениям:
-
измеренным координатам точек на стереопаре снимков – хi, yi;
-
элементам внутреннего ориентирования снимков fi, x0i, y0i;
-
3 параметрам, задающим ориентацию системы координат модели (в нашем случае 1’, 1’, 1’) и приближенным значениям элементов взаимного ориентирования.
Свободный член ℓ вычисляется по формуле ( 4.3) таким же образом.
Полученную систему уравнений поправок решают методом приближений, а в случае, если измерено более 5 точек по методу наименьших квадратов (под условием VTPV=min). В результате решения находят значения элементов взаимного ориентирования.
Критерием, по которому принимается решение о завершении итерраций, могут являться величины поправок к определяемым неизвестным или величины остаточных поперечных параллаксов, которые для каждой измеренной точки вычисляются по формулам:
; ( 2)
где .
Величина qост представляет собой разность ординат измеренных точек на стереопаре снимков, приведенных к идеальному случаю съемки, то есть q=y1-y2.
Необходимо отметить, что при отсутствии ошибок построения снимка и ошибок измерений величина q должна быть равна 0.
При определении элементов взаимного ориентирования оптимальным вариантом считается измерение 12-18 точек на стереопаре снимков, расположенных парами или тройками в 6 стандартных зонах (рис. 1).
Р ис. 1
- главная точка снимка
- стандартно расположенная зона
В этом случае получается наиболее точное и надежное определение элементов взаимного ориентирования и появляется возможность локализации грубых измерений.
6. Построение фотограмметрической модели
Построение фотограмметрической модели заключается в определении координат точек объекта по измеренным на стереопаре снимков координатам их изображений в системе координат модели ОМХМYMZM.
Определение координат точек модели производится по формулам прямой фотограмметрической засечки (см. раздел 1).
При этом координаты центра проекции S принимаются произвольными (обычно 0). Также произвольно (но не равной 0) выбирается величина ВХ. В большинстве случаев практики величину ВХ принимают равной:
;
где b – базис фотографирования в масштабе снимка,
m – знаменатель масштаба снимка.
Остальные значения элементов внешнего ориентирования определяют по 8 параметрам by, bz, 1’, 1’, 1’, 2’, 2’, 2’, 5 из которых являются элементами взаимного ориентирования, а 3 определяют ориентацию системы координат модели.
При этом
.
Например, если были определены элементы взаимного ориентирования 1’, 1’, 2’, 2’, 2’ и при этом величины параметров by, bz, 1’ были приняты равными нулю (by=bz=1’=0), то BY=BZ=0, 1=0, 1=1’, 1=1’, 2=2’, 2=2’, 2=2’.
Если были определены элементы взаимного ориентирования by, bz, 2’, 2’, 2’, а величины параметров 1’, 1’, 1’ были приняты равными нулю (1’= 1’= 1’=0), то
.
7. Внешнее ориентирование модели. Элементы внешнего ориентирования модели
Р ис. 1
На рис.1: OXYZ - система координат объекта, ОМХМYMZM - система координат фотограмметрической модели , А – точка объекта ,АМ -точка фотограмметрической модели, соответствующая точке А объекта .
Векторы определяют положение начала системы координат модели ОМХМYMZM и точки А местности относительно начала системы координат объекта OXYZ.
Векторы определяют соответственно положение точек АМ и А относительно системы координат фотограмметрической модели.
Из рис. 1 следует, что
. ( 1)
Векторы коллинеарны, поэтому
; ( 2)
где t – знаменатель масштаба модели.
С учетом ( 2) выражение ( 1) имеет вид:
; ( .3)
В координатной форме выражение ( 3) имеет вид:
; ( 4)
Или
. ( .5)
В выражениях ( 4) и ( 5):
X, Y, Z – координаты точки объекта в системе координат объекта;
ХМ, YM, ZM - координаты соответствующей точки модели в системе координат фотограмметрической модели;
АМ – матрица преобразования координат, элементы aij которой являются функциями углов М, М, М, определяющих ориентацию системы координат модели относительно системы координат объекта;
t – знаменатель масштаба модели.
7 параметров: - называют элементами внешнего ориентирования модели.
8. Определение элементов внешнего ориентирования модели по опорным точкам
Для определения элементов внешнего ориентирования модели по опорным точкам в качестве исходных используют уравнения ( 7.5), которые представим в виде:
. ( 1)
Каждая планово-высотная опорная точка (X,Y,Z) позволяет составить 3 уравнения ( 1), в которых неизвестными являются 7 элементов внешнего ориентирования модели. Каждая плановая опорная точка (X,Y) позволяет составить два первых уравнения из выражения ( 1), а каждая высотная опорная точка (Z) – третье уравнение из выражения ( 1).
Для определения элементов внешнего ориентирования модели необходимо составить систему не менее чем из 7 уравнений. Очевидно, что для этого необходимо иметь не менее двух планово-высотных и одной высотной опорной точки. Задачу можно также решить, если иметь две плановые и три высотные опорные точки.
Так как уравнения ( 1) не линейны, их приводят к линейному виду и переходят к уравнениям поправок.
. ( 2)
В уравнении поправок:
ai, bi, ci – частные производные от уравнений ( 1) по соответствующим переменным ;
ℓX, ℓY, ℓZ – свободные члены.
Значения коэффициентов уравнений поправок ai, bi, ci вычисляют по известным значениям координат ХМ, YM, ZM и X, Y, Z и приближенным значениям неизвестных. Значения свободных членов ℓX, ℓY, ℓZ вычисляют таким же образом по формулам ( .1).
Полученную таким образом систему уравнений поправок решают методом последовательных приближений. Если количество уравнений поправок в системе больше семи, то ее решают по методу наименьших квадратов (под условием VTPV=min).
9. Определение элементов внешнего ориентирования снимков стереопары
По элементам внешнего ориентирования модели и элементам взаимного ориентирования можно определить элементы внешнего ориентирования снимков стереопары.
Линейные элементы внешнего ориентирования снимков определяют по формулам:
; ( 1)
в которых - координаты центра проекции i-го снимка стереопары в системе координат модели.
Угловые элементы внешнего ориентирования снимков i, i, i определяют в следующей последовательности:
-
Сначала получают матрицу преобразования координат i-го снимка
; ( 2)
АМ – матрица, в которой элементы aij вычисляют по угловым элементам внешнего ориентирования модели М, М, М ;
Ai’ – матрица, в которой элементы aij вычисляют по угловым элементам взаимного ориентирования i-го снимка i’, i’, i’.
-
Затем по элементам aij матрицы Ai вычисляют угловые элементы внешнего ориентирования i-го снимка стереопары:
.
10. Точность определения координат точек объекта по стереопаре снимков
Для предрасчета точности определения координат точек местности по стереопаре аэрофотоснимков, учитывая, что углы наклона снимков не превышают 1°- 3°, а базис фотографирования практически горизонтален, воспользуемся формулами связи координат точек местности и координат их изображений на стереопаре снимков идеального случая съемки ( 2.4):
. ( 2.4)
Сначала получим среднюю квадратическую ошибку определения высоты точки Z местности. Для этого продифференцируем третью формулу выражения (1.8.4) по аргументу р.
.
З аменим величину р на b – базис в масштабе снимка.
Рис.1
На рис.1 О1и О2 – главные точки снимка.
В результате получим
.
Перейдя к средним квадратическим ошибкам получим формулу:
. ( 1)
Для получения средних квадратических ошибок определения координат Х и Y точки местности продифференцируем первые две формулы выражения (1.8.4) по аргументам x, y, Z и перейдем к средним квадратическим ошибкам.
В результате получим
. ( 2)
В качестве примера вычислим величины mX, mY и mZ точек местности, определенных по стереопаре снимков масштаба 1:5000, полученной АФА с f =150 мм и форматом кадра 23х23 см, с продольным перекрытием 60%.
Будем считать, что на стереопаре снимков точки были измерены с ошибками
.
В этом случае высота фотографирования
;
а базис фотографирования в масштабе снимка
.
Средние квадратические ошибки определения координат точки местности, вычисленные по формулам ( 1) и ( 2) будут равны:
.