24874 (654511), страница 2
Текст из файла (страница 2)
Результаты эксперимента, проведенного при апробации данного алгоритма
На основе геодезических данных по выполнению геометрического нивелирования ΙΙ класса на ряде объектов, подвергающихся деформациям, c целью апробирования составленной программы были обработаны семь циклов наблюдений нивелирной сети, с интервалами в три месяца.
В первом цикле представлена информация по четырнадцати реперным точкам, включая исходный Rp-29090 с высотой 150.00м, рис № 1. Следует отметить, что репер Rp-29090 был выбран таким образом, чтобы имел стабильное положение по высоте. Если определяются относительные деформации, то безошибочные репера не нужны, и в качестве исходного репера для уравнивания принимается любой репер, но с постоянной отметкой во всех циклах.
Рис. 1
В первом цикле в задачу входило: на основе результатов высокоточного нивелирования с использованием программы обработать все результаты и оценить точность полученных уравненных высот всех реперов. Для этого в качестве исходной информации были введены название проекта и измеренные превышения между точками, при этом было учтено, что они неравноточные. После этого программой выполняется ряд вычислений и решений, начиная с применения рекуррентного способа вычисления, и в результате получен контроль грубых ошибок измерений с одним исходным пунктом и при уравнивании параметрическим способом получены окончательные результаты уравнивания. Полученные уравненные программой высоты точек Н (м), а также СКО(Н) в мм, представлены в таблице 1, а диагональные элементы обратной матрицы следующие:1)0.0, 2)0.929, 3)0.929,4)1.714, 5)1.714 , 6)2.357; 7)2.357; 8)2.857; 9)2.857; 10)3.214; 11)3.214; 12)3.429; 13)3.429; 14)3.500.
Таким образом заканчивается обработка результатов измерений в первом цикле, а на диске информация будет сохраняться в файлах moz-1.Rz и moz-1.pvv. Полученные результаты, как при контроле грубых ошибок, так и при уравнивании параметрическим способом, а также СКО (Н) позволяют сделать вывод о том, что результаты выполненного высокоточного геометрического нивелирования имеют высокое качество. Результаты обработки данных в первом цикле представлены в таблице 1.
Табл. 1
№ марки | имямарки | Н( m) | С.К.О (Н)(mm) |
1 | Rр29 | 150.0000 | 0.0 |
2 | Р9 | 148.2825 | 0.7 |
3 | Р6 | 148.2614 | 0.7 |
4 | Р10 | 146.9954 | 0.9 |
5 | Р5 | 146.9789 | 0.9 |
6 | Р11 | 146.7839 | 1.1 |
7 | Р3 | 146.7374 | 1.1 |
8 | Р13 | 147.1644 | 1.2 |
9 | Р2 | 147.0958 | 1.2 |
10 | m9 | 148.6389 | 1.3 |
11 | m11 | 148.6949 | 1.3 |
12 | m15 | 148.0635 | 1.3 |
13 | m16 | 147.6339 | 1.3 |
14 | m10 | 148.6528 | 1.3 |
Во втором цикле смоделированы деформации для точек m9 , m11 , m15 и m16 той же геодезической сети, что и на первом цикле. После деформирования на 6 мм указанных точек программой выполняются вычисления и решения, в результате которых получают результаты параметров второго цикла. Все результаты обработки второго цикла, а также [pvv] и r = n-k будут храниться на диске в файлах moz – 2.x и moz – 2. Диагональные элементы матрицы в файлах moz-1.diagonal.
Следующим этапом будет переход программы ко второй части работы, которая необходима для анализа деформаций с объединением всех циклов параметрическим способом. Получены результаты:
Табл.2
№ марки | Имя марки | Н (m) | СКО (Н) (mm) | D (H) (mm) | СКО(D) (mm) |
1 | Rp29 | 150.0000 | 0.0 | 0.0 | 0.0 |
2 | P9 | 148.2824 | 0.5 | 0.0 | 0.9 |
3 | P6 | 148.2614 | 0.5 | 0.0 | 0.9 |
4 | P10 | 146.9951 | 0.6 | 0.0 | 1.2 |
5 | P5 | 146.9783 | 0.6 | 0.0 | 1.2 |
6 | P11 | 146.7836 | 0.8 | 0.0 | 1.5 |
7 | P3 | 146.7368 | 0.8 | 0.0 | 1.5 |
8 | P13 | 147.1642 | 0.8 | 0.0 | 1.6 |
9 | P2 | 147.0949 | 0.8 | 0.0 | 1.6 |
10 | m9 | 148.6327 | 1.0 | -6.1 | 1.7 |
11 | m11 | 148.6889 | 1.0 | -6.0 | 1.7 |
12 | m15 | 148.0573 | 1.0 | -5.9 | 1.8 |
13 | m16 | 147.6283 | 1.0 | - 6.4 | 1.8 |
14 | m10 | 148.6523 | 0.9 | 0.0 | 1.8 |
В таблице 2 представлены уравненные высоты Н (м) всех точек сети, СКО (Н) в (мм), а также величины вычисленных деформаций D (Н) и СКО (D) в мм. По результатам можно сделать вывод о том, что вычисленные программой деформации по величине близки смоделированным (6мм). Благодаря части программы, предназначенной для построения графиков, на рис. № 2 можно увидеть графическое представление деформаций точки m9 во втором цикле наблюдений.
Рис. 2
В третьем цикле наблюдений, были смоделированы деформации, равные 6мм для тех же точек, которые подвергались деформациям, и для новой точки m10 , которая была принята неподвижной. Сделано это для проверки работоспособности алгоритма и программы. После всех вычислений и решений, как при рекуррентном, так и при параметрическом способах получены результаты контроля грубых ошибок и окончательные результаты уравнивания с одним исходным пунктом.
В третьем цикле, кроме уравненных высот точек Н(м), СКО(Н)(мм), D(Н) в мм и СКО (D)(мм) получены суммарные деформации (SUM (D)) в мм, а также деформации относительно первого цикла (D-1) в мм . Таблица 3 показывает результаты третьего цикла.
Табл. 3
№ марки | Имя марки | Н ( м) | СКО (Н) (мм) | DEF (H) ( мм) | СКО (D) (мм) | SUM (D) ( мм) | D-1(мм) | СКО (D) (мм) |
1 | Rp29 | 150.0000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
2 | P9 | 148.2822 | 0.4 | 0.0 | 0.8 | 0.0 | 0.0 | 0.8 |
3 | P6 | 148.2620 | 0.4 | 0.0 | 0.8 | 0.0 | 0.0 | 0.8 |
4 | P10 | 146.9957 | 0.5 | 0.0 | 1.1 | 0.0 | 0.0 | 1.1 |
5 | P5 | 146.9787 | 0.5 | 0.0 | 1.1 | 0.0 | 0.0 | 1.1 |
6 | P11 | 146.7839 | 0.6 | 0.0 | 1.3 | 0.0 | 0.0 | 1.3 |
7 | P3 | 146.7366 | 0.6 | 0.0 | 1.3 | 0.0 | 0.0 | 1.3 |
8 | P13 | 147.1639 | 0.7 | 0.0 | 1.4 | 0.0 | 0.0 | 1.4 |
9 | P2 | 147.0949 | 0.7 | 0.0 | 1.4 | 0.0 | 0.0 | 1.4 |
10 | m9 | 148.6267 | 0.9 | -5.7 | 1.5 | -11.2 | -11.3 | 1.5 |
11 | m11 | 148.6827 | 0.9 | -5.9 | 1.5 | -12.6 | -12.9 | 1.5 |
12 | m15 | 148.0517 | 1.0 | -5.9 | 1.6 | -10.9 | -11.2 | 1.6 |
13 | m16 | 147.6217 | 1.0 | -6.7 | 1.6 | -13.0 | -12.7 | 1.6 |
14 | m10 | 148.6465 | 1.0 | -6.1 | 1.6 | -6.1 | -5.9 | 1.6 |
В таблице 3 видно, что марка m10 только в третьем цикле стала подвижной.
Рис.3
На рисунке № 3 представлен график деформаций точки m9. Точка m9 выбрана среди других для примера.
Как было отмечено ранее, на рисунке 3 показаны деформации второго цикла относительно первого цикла, далее деформации третьего цикла относительно второго.