24808 (654483), страница 4
Текст из файла (страница 4)
Рис. 1. Детали строения кальцитоносной шаровой лавы.
/—базальт; 2—туфопесчаник: 3—мелкообломочный минерализованный материал; 4 — прожилки и оторочки цеолитов; 5 — глина; 6 — исландский шпат
шаровом пространстве и в пустотах мандельштейна. Преобладают монокристальные или сдвойникованные выделения кальцита причудливой формы весом от 1—2 до 30 кг, ассоциирующиеся с морденитом и монтмориллонитом. Кристаллы пронизаны многочисленными иглами морденита и только в центре полупрозрачны или прозрачны. Для практических целей более интересен кальцит второй генерации, который сопровождается десмином и гейландитом и представлен хорошо образованными прозрачными скаленоэдри-ческими кристаллами со светло-желтой окраской.
Своеобразное строение имеет необычно мощная (40-50 м) линза шаровых лав, находящаяся вблизи устья р. Гутконгды. Ее нижняя часть почти не обнаруживает “подушечной” текстуры и сложена компактным базальтом с ксенолитами подстилающих туфов. Средняя часть линзы до высоты 20 м имеет ясно выраженную шаровую текстуру. Еще выше развиты уплощенные блоки пористого мандельштейна, разделенные сравнительно обширными участками дресвы. Местами эти блоки смыкаются, образуя внутрипокровную зону мандельштейна, богатую мелкими кальцитовыми миндалинами и короткими прожилками томсонита, анальцима, ломонтита и изредка кальцита.
Скопления исландского шпата встречаются в средней части линзы среди сильно минерализованной дресвы и обычно сопровождаются монтмориллонитом. В цементации дресвы участвуют также гейландит, ломонтит, апофиллит, морденит, томсонит, десмин, халцедон и минералы из групп хлорита и гидрослюд. Сложные сростки ромбоэдрических кристаллов исландского шпата отделены от дресвы оторочкой из мелкозернистого кальцита и халцедона или цеолитов. Хорошо ограненные кристаллы обычно имеют более высокое качество.
Алюнское кальцитоносное поле расположено в долине Нижней Тунгуски ниже р. Люлюикты. Серия лавовых покровов нидымской свиты выполняет здесь пологую депрессию в корвунчанских отложениях площадью около 1500 км2. Два нижних покрова местами перемяты, остальные залегают почти горизонтально со слабым наклоном на северо-восток под углом 1-2°.
Лавовая толща разделена прослоями туфов и вулкано-осадочных пород на несколько пачек, каждая из которых состоит из одного-двух мощных и протяженных покровов и ряда тонких, быстро выклинивающихся покровов или потоков. В пределах кальцитоносного поля нижненидымская подсвита сложена четырьмя пачками покровов мощностью от 15-20 до 70-80 м. В основании ряда покровов встречаются линзы шаровых лав, протяженностью от нескольких десятков метров до 1-2 км и мощностью от 1 до 10-15 м. Выше следуют сравнительно однородные базальтовые покровы верхов нидымской свиты с выдержанными прослоями туфопесчаников. На плоских вершинах высоких водоразделов сохранились останцы мощного (50-60 м) базальтового покрова, относящегося к кочечумской свите. В районе фиксируются несколько широких зон разрывных нарушений северо-восточного, субширотного и северо-западного простирания, вдоль которых базальты иногда цеолитизированы и окремнены.
Скопления исландского шпата обнаружены в мандельштейнах и шаровых лавах. Наиболее интенсивная минерализация отмечается в маломощных покровах, подстилающих шаровые лавы покрова. Эти покровы в среднем имеют мощность по 2-3 м, которая иногда увеличивается до 10-15 м, и пологоволнистую бугорчатую или глыбовую поверхность. В основном они сложены миндалекаменным базальтом, а в местах выклинивания - сильно пористым мандельштейном. В прогибах кровли этой пачки залегают шаровые лавы, обычно подстилающиеся зеленоватым или красным обожженным туфопесчаником.
Наблюдается сравнительно много небольших линз шаровых лав длиной от 20 до 600 м и мощностью от 1,5 до 10 м. Лавы содержат от 30 до 70% дресвы, которой особенно много в верхних частях линз. Они обильно минерализованы кальцитом, мордени-том, гейланднтом, хлоритом, гидрослюдами и монтмориллонитом, реже халцедоном, анальцимом и апофиллитом, образующими многочисленные прожилки и гнездообразные бесформенные скопления. В гнездах, примыкающих к сфероидам миндалекаменного базальта, часто встречаются сростки крупных, частично ограненных кристаллов полупрозрачного кальцита, которые изобилуют
Рис. 2. Детали строения кальцитоносного покрова, залегающего под шаровой лавой.
/—шаровая лава; 2—базальт; 3—миндалекаменные базальты; 4—мандельштейн; 5 — прожилки цеолитов; 6 — халцедон; 7 — исландский шпат; 8 — трещины отдельности; 9—граница покровов
включениями морденита, сапонита и почти не представляют практического интереса.
Продуктивная часть минерализованной зоны ограничена мандельштейнами и миндалекаменными базальтами, находящимися непосредственно под шаровыми лавами. Богатая минерализация кальцитом и халцедоном отмечается среди глыбовых лав. В Алюнском поле известны также иные структурные типы кальцитовой минерализации. Так, скопления исландского шпата в скалах Суслова на правом берегу р. Нижней Тунгуски связаны с тонким горизонтом шаровой лавы в основании 5 базальтового покрова. В пределах этого горизонта типичная шаровая лава, сложенная мелкими сфероидами с дресвой, чередуются с участками недоразвитой подушечной текстуры. В таких местах крупные матрацевидные блоки миндалекаменного базальта соединены с вышележащим мандельштейном. Мощность шаровой лавы колеблется от 10—15 см до 2 м, в среднем 0,5 м.
Среди минерализованной дресвы часто встречаются небольшие неправильные или изометричные полости со сростками полупрозрачных скаленоэдрических кристаллов кальцита и исландского шпата размером до 15 см по длинной оси. Здесь широко распространены хлориты, монтмориллонит, палагонит и особенно морденит, который тесно ассоциируется с исландским шпатом и включен в его кристаллы.
Кальцитовая минерализация в мандельштейнах, не связанная с шаровыми лавами, наблюдается в тектонической зоне, наложенной на лавовые покровы низов нидымской свиты. Пачка, состоящая из 1, 2 и 3 покровов, наклонена на северо-запад под углом от 10 до 60° и пересечена вертикальными сбросами с амплитудой смещения блоков до 10-15 м. Минерализация развита в мандельштейнах 2 покрова, мощность которых в этом месте достигает 10 м, и в перекрывающем их покрове-сателлите, сложенном почти нацело мандельштейном.
Раздробленные мандельштейны с многочисленными миндалинами палагонита, кальцита и халцедона рассекаются жилами кальцита и цветного яшмовидного халцедона мощностью от 5 до 80 см. Такие же халцедоновые жилы были встречены в базальтах.
Кристаллы исландского шпата находятся в полостях у висячего бока жил яшмовидного голубовато-синего или кирпично-красного халцедона. Они интенсивно окрашены в желтый цвет и содержат включения пирита и халькопирита.
ГЕОЛОГО-СТРУКТУРНАЯ ОБСТАНОВКА КАЛЬЦИТООБРАЗОВАНИЯ
Прежде всего необходимо отличать своеобразные вулкано-тектонические структуры месторождений в вулканических породах от тектоногенных структур телетермальных месторождений в известняках. В обоих случаях должны рассматриваться взаимосвязанные структуры разного порядка: кальцитоносных районов – полей - минерализованных тел - скоплений кристаллов исландского шпата. Два первых звена - это сравнительно крупные региональные структуры, которые в основном определяют размещение позже минерализованных горных пород; остальные представляют собой частные структуры локализации исландского шпата и сопутствующих ему гидротермальных минералов.
Частные структуры локализации отражают наиболее типичные черты месторождений оптического кальцита, формирующихся в условиях малых и очень малых глубин. Отсутствуют деформации, связанные со складчатостью. Основной структурный рисунок создается сложной системой разрывных нарушений или специфическими контракционными трещинами и первичной пористостью эффузивных и субвулканических пород. Трещины образуются в зоне легких статических нагрузок, где процессы растяжения преобладают над сжатием, характерно обилие открытых трещин отрыва и участков грубого дробления пород. Большую роль играют гравитационные деформации-структуры проседания и обрушения над свободными полостями самого различного размера и происхождения: от вулканических кальдер до карстовых пещер.
Интравулканические структуры месторождений и кальцитоносных тел в эффузивных породах определяются особенностями внутреннего строения пачек лавовых покровов, текстурой лав и наличием поздних разрывных нарушений. В соответствии с этим выделяются: 1) структуры контактов покровов, 2) протоэффузивные внутрипокровные структуры и 3)структуры постлавового дробления.
Эффузивные толщи сложены многими лавовыми покровами, которые непосредственно налегают друг на друга и местами переслаиваются пирокластическими, вулкано-терригенными и осадочными породами. Следовательно, излияния лав происходили почти непрерывно, чередуясь с более или менее длительными периодами вулканического покоя, эрозионных процессов и осадконакопления. Лавовые покровы имеют массивное, а также частично или полностью шаровое (подушечное) строение.
Наиболее распространены массивные лавовые покровы, состоящие из мелкозернистого базальта с пористой мандельштейновой зоной закалки вверху и внизу покрова. По относительному развитию этих зон различаются асиметрично-зональные, симетрично-зональные и неправельно-зональные (сложно-зональные) покровы. В подавляющем большинстве случаев верхняя зона мандельштейна в 10-15 раз мощнее нижней, что обусловливает асиметрично-зональное строение таких покровов. Обильно пористый мандельштейн постепенно, но на коротком расстоянии сменяется миндалекаменным базальтом с редким, но более крупными миндалинами и затем однородным базальтом. Изредка встречаются симетрично-зональные покровы, у которых мощности зон верхнего и нижнего мандельштейна примерно одинаковы. При этом нижний мандельштейн обычно отличается неравномерной пористостью, а также наличием трубчатых миндалин, и другими следами прохождения газовых струй.
В нидымской свите Сибирской платформы средняя мощность массивных покровов равна 12-15 м, на долю верхней зоны мандельштейна приходиться от 0,1 до 2-3 м. Замечено, что соотношение между мощностью зон мандельштейна и базальта зависит от общей мощности покрова и тем больше, чем тоньше покров. Маломощные покровы местами сложены почти одним мандельштейном.
Механизм образования пористых зон хорошо изучен и заключается в дегазации застывающей лавы, вязкость которой увеличивается преждевсего в краевых, быстро охлаждающихся частях потока. В этом процессе кроме изначально растворенных газов иногда принимает участие внешняя вода, выпаренная лавой из влажного субстрата. Происхождение сложно-зональных покровов объясняется переслаиванием отдельных языков лавы вдоль фронта движущегося лавового потока.
Значительно сложнее строение лавовых покровов, имеющих участки шаровой или подушечной текстуры. Шаровые или, как их иногда называют “подушечные” лавы (pillow lavas) известны в вулканогенных формациях любого возраста: от докембрийского до современного.
Четкое определение дано Г.Стернсом: “Пиллоу лава состоит из сфероидальных иэлипсоидальных блоков, покрытых стекловатой оболочкой и обыкновенно отделенных друг от друга обломочно-стекловатым материалом”. К этому определению следует добавить следующие типичные черты шаровых лав, сформулированные И.Луисом: “Во многих случаях обломочный материал в межшаровых пространствах сцементирован в виде брекчий многочисленными вторичными минералами, среди которых доминируют хлориты, кальцит, кварц, агат вместе с эпидотом и разнообразными цеолитами. Промежутки между “подушками” бывают заполнены радиоляритом, яшмами, известняком, сланцем и более грубыми терригенными осадками, попавшими туда при внедрении лавы в глину или ил, а также вследствие более позднего отложения. Округлые блоки лавы часто вытянуты или уплощены, причем их оси расположены параллельно. В краях сфероидов и подушек обычно находятся пористая или вариоловая зона, а их центральная часть бывает сильно кавернозной или даже пустотелой”.
Происхождение шаровых лав объяснялось самыми различными причинами, но наиболее популярной и признанной большинством геологов, является точка зрения, признающая необходимость участия воды в процессе охлаждения лавы т.е. излияние лавы непосредственно под воду или ее внедрение в рыхлые, пропитанные влагой осадки. Эта точка зрения подтверждается частой ассоциацией шаровых лав с морскими или озерно-речными отложениями, а также образованием подушечных текстур при современных излияниях базальтовой лавы в море. Разногласия в представлениях о генезисе шаровых лав, вызваны главным образом неустановившейся терминологией.
Шаровые лавы Сибирской платформы, Тимана и Прибайкалья, образовавшиеся в континентальных условиях, обычно слагают нижние части некоторых мпокровов и сменяются массивными базальтами по вертикали и простиранию. В зоне перехода от шаровой к плотной лаве промежутки между сфероидами и”подушками” уменьшаются, и они постепенно сливаются в компактный мандельштейн. Выше покровы имеют обычное асимметрично-зональное строение с мощной зоной базальта и верхней зоной мандельштейна.