26489-1 (654376), страница 3
Текст из файла (страница 3)
Вулканический материал, поднятый на станциях G9620 и G9621, близок между собой. Среди базальтов также имеются непористые афировые (обр. G9620/10-12, 18, 19, G9621/6, 7, 10-12) и оливин-плагиоклаз порфировые (обр. G9620/1-9, 13-17, G9621/4, 5, 9) и пористые (10-15%) афировые (обр. G9620/21, 22, G9621/1, 2) и плагиоклаз порфировые (обр. G9621/3) представители. В афировых разностях встречаются отдельные вкрапленники Pl, Ol, Cpx. На станции G9620 подняты также очень пористые породы (60-80%), представленные окисленными шлаками красного цвета (обр. G9620/25-27) и вулканическими бомбами (обр. G9620/23, 24, 28). Последние имеют кислый состав (до дацитов) и содержат небольшое количество вкрапленников Pl, Ol, Cpx. Изучены составы вкрапленников в 4 образцах, при этом они группируются в две группы в независимости от их текстурно-структурных особенностей. В образцах G9620/6, 9 - An85-89, Fo83-84, Fs10 , а в образцах G9621/1, 4 - An85-91, Fo76, Fs15 (табл. 2, 3, 4). Большая часть вулканитов слабо изменена, в них встречается в небольших количествах лишь глауконит (табл. 5). Ряд образцов тектонизированы и содержат хлорит (обр. G9620/7, 20).
Базальты из зоны сочленения палеоструктур АмАХ и САХ (станции S1854-56) в целом близки к таковым, встреченным на флангах САХ.
Район сочленения палеоструктур САХ и АфАХ охарактеризован только одной станцией - G9617 (рис. 1, табл. 1), приуроченной к тектоническому эскарпу, представляющему собой борт одной из грабенообразных депрессий. Полученные при драгировании преимущественно афировые и практически непористые базальты отличаются друг от друга степенью свежести. Часть из них несет только продукты поверхностного изменения (палагонит) (обр. G9617/1-11), другие в заметных количествах содержат хлорит, карбонаты (табл. 5), кварц, пирит и иногда халькопирит и борнит (обр. G9617/12-33) и таким образом, по-видимому, характеризуют нижние горизонты базальтового разреза. Базальты с хлоритом тектонизированы, разбиты многочисленными трещинами кливажа.
Три станции характеризуют три различных хребта, простирающихся между поднятием Шписс и островом Буве (станции G9618, 22, 23) (рис. 1, табл. 1). Полученный каменный материал близок между собой и близок к таковому, распространенному на выше названных поднятиях. Это в основном пористые и сильно пористые слабо оливин-плагиоклаз порфировые разности базальтов и более кислых вулканитов. Часть из них окрашена в красный цвет в силу интенсивного окисления, другие заметно палагонитизированы (обр. G9623/1, 2). Небольшое количество базальтов менее пористые и более измененные, содержащие уже смектит (обр. G9618/7, G9622/6).
Выше были приведены составы вкрапленников и микролитов из некоторых вулканитов. Их количества недостаточно для корректных выводов о характере изменчивости состава минералов, в то же время следует отметить некоторые намечающиеся тенденции.
Наиболее железистые вкрапленники оливина встречены среди вулканитов поднятия Шона. Для крупных вкрапленников - это Fo72-80, для мелких - Fo62-67. Такие же оливины имеются в аналогичных вулканитах, но на других структурах из зоны сочленения палеоструктур САХ, АфАХ и АмАХ. При этом с наиболее железистыми вкрапленниками оливина ассоциируют наиболее основные вкрапленники плагиоклаза - An86-96. Наиболее магнезиальные фенокристы оливина (Fo86-87 ), встречены среди деплетированных базальтов, вкрапленники плагиоклазов в них в целом более кислые (An85-89 ), чем на поднятии Шона. Вкрапленники ортопироксена имеются только в вулканитах, развитых на поднятии Шона и аналогичных им. Все изученные микролиты клинопироксена отличаются от вкрапленников большей железистостью и имеют высокие концентрации титана, при этом, чем более обогащенный базальт, тем эта концентрация выше. Изученные вкрапленники рудного минерала относятся к титаномагнетиту (табл. 6). Заметно более высоким содержанием TiO 2 (29,91%) выделяются зерна из образца G9610/30, который представляет базальты, также заметно отличающиеся по составу от других вулканитов. В изученных вулканитах было встречено несколько зерен шпинели. По соотношению хромистости (40-51) и магнезиальности (40-70) они попадают в поле составов шпинелей из мантийных перидотитов, однако высокие концентрации титана свидетельствуют о воздействии на них базальтового расплава (табл. 7).
Петро-геохимический состав вулканитов
Вещественный состав пород в районе ТСБ изучался в ряде морских экспедиций [Dick et al., 1984; Dickey et al., 1977; Le Roex et al., 1983, 1985, 1987]. Выявлены значительные вариации составов лав от пикритов до ферробазальтов. Было показано, что подъем мантийного плюма Буве привел к формированию в непосредственной близости от него провинций базальтов, обогащенных легкими редкоземельными элементами, с изотопными отношениями 87Sr/86Sr и 143Nd/144Nd соответственно выше и ниже, чем N-MORB. Эти выводы в основном базируются на данных изучения базальтов из осевых частей срединно-океанических хребтов. Мы рассмотрим составы базальтов, поднятых в пределах различных структур из гораздо более обширной области, что позволит проанализировать вулканизм этого района в значительно большем возрастном диапазоне.
Базальты южной части САХ (табл. 8) в пределах осевой (рифтовой) зоны характеризуются сравнительно однородным составом. Это преимущественно свежие слабо и умеренно фракционированные толеитовые базальты типа N-MORB ((La/Sm)n 0,7-1,0, (Nb/Zr)n 0,3-0,7)) с преобладающей железистостью (FeO
/MgO) около 1,2-1,4 (здесь и в дальнейшем значения отношения (La/Sm)n приводятся по данным работ [Пущаровский и др., 1998; Сущевская и др., 1999; Simonov et al., 1996]). Концентрации TiO2, K2O и P2O5 закономерно возрастают соответственно от 1,1%, 0,2%, 0,08% в наименее дифференцированных разностях (обр. G9625/1 с железистостью 0,8) до 2,2%, 0,4%, 0,6% в наиболее дифференцированных базальтах с железистостью до 1,7-1,8 (рис. 2-4). Это свежие породы с потерями при прокаливании (п.п.п.) менее 1%. Содержание SiO 2 находится в пределах 48-50%, Cr 130-150 г/т, Sr 90-150 г/т, Rb 1-10 г/т. Несколько отличаются базальты станции G9624, в которых заметно более высокие концентрации K2O (до 0,57%) и P2O5 (до 0,24%), что позволяет отнести их к толеитам типа T-MORB.
Н
а вариационных диаграммах базальты Срединно-Атлантического хребта за исключением существенно измененных разностей образуют компактные поля или тренды, наиболее отличающиеся от других вулканитов этого района более высоким содержанием FeO
и более низким - Al2O3 при тех же значениях коэффициента фракционирования FeO
/MgO, а также менее быстрым темпом накопления K2O (рис. 2, 3, 4).
Хребет Шписс сложен свежими, преимущественно пузыристыми базальтами и андезито-базальтами (табл. 8). В отличие от базальтов САХ они охватывают гораздо больший интервал фракционирования: от слабо фракционированных с железистостью 1,1 до сильно фракционированных разностей с FeO
/MgO до 4. Преобладают значения 1,8-2,5. На диаграмме TiO2 - FeO
/MgO (рис. 2) отчетливо прослеживается тренд фракционирования с резким накоплением TiO2 от 2,16% (обр. G9612/19) до 3,43% (обр. G9614/20). При дальнейшем фракционировании расплава массовая кристаллизация рудных фаз привела к падению содержаний TiO2 до 2,5% при железистости около 4 (обр. G9612/6). В ходе фракционирования, как видно из диаграмм окисел - FeO
/MgO (рис. 2), возрастают содержания SiO2 от 45 до 55%, K2O от 0,4 до 1,6%, P2O5 от 0,1 до 0,65%, Na2O от 2 до 6%. Закономерно падает содержание Al2O3 от 17 до 14% и CaO от 12 до 6%. Точки составов базальтов хребта Шписс хорошо аппроксимируются единым трендом дифференциации, что позволяет говорить о сохранении условий формирования расплавов на всем протяжении хребта за время его существования. Об однородности его мантийного источника говорят незначительно варьирующие отношения некогерентных элементов, в частности (La/Sm)n (1,6-2,1) и (Nb/Zr)n (0,8-1,2). Следует подчеркнуть, что на этот тренд попадают вулканиты со всех опробованных морфоструктур хребта в независимости от их текстурно-петрографических особенностей. Это и слабо пористые разности, и пористые лавы, и пиллоу, и чрезвычайно пузыристый вулканический шлак. Наименее дифференцированный образец с хребта Шписс (G9612/19) по уровню SiO2, K2O и P2O5 близок к обогащенным базальтам из рифтовой долины САХ (станция G9624), однако заметно отличается от него более низкими концентрациями Cr, Cu, Ni, V, Zn, Co и Sc. Перечисленные элементы имеют невысокие или пониженные концентрации во всех вулканитах хребта Шписс, особенно это характерно для хрома.
От всех базальтов хребта Шписс по многим параметрам отличается образец G9614/22, где (Nb/Zr)n отношение составляет всего 0,38 и имеют место очень низкие концентрации TiO2 и Na2O. По этим особенностям он близок к базальтам, широко распространенным на поднятии Шона, которые будут рассмотрены ниже. Вторым исключением является образец G9614/10, выделяющийся заметно более низкими содержаниями Na2O и очень высокими концентрациями хрома (около 250 г/т), что сближает его с обогащенными базальтами, встреченными в пределах САХ.
С
о склонов острова Буве нами драгированы базальты и андезито-базальты. Породы близкого состава широко распространены и на самом острове Буве. В работе [Le Roex and Erlank, 1982], учитывая их субщелочной уклон, они классифицируются как гавайиты и муджиериты. Поэтому в дальнейшем мы также будем применять такое название для этих пород. Основная масса гавайитов и муджиеритов острова Буве и его подводных склонов ложится на единый, протяженный тренд дифференциации по многим параметрам и, прежде всего, по таким генетически важным, как TiO2, K2O и P2O5, совпадающий с трендом фракционирования вулканитов хребта Шписс. Но в отличие от последнего он существенно более продвинутый, на самом острове встречены очень кислые вулканиты вплоть до риолитов [Le Roex and Erlank, 1982]. Железистость гавайитов и муджиеритов варьирует от 1 до 5, содержание SiO2 от 48% до 55%, TiO2 от 2,28% до 4,4% и снова падает до 1,52% у наиболее дифференцированных разностей, K2O от 0,8% до 2,3%, P2O5 от 0,4% до 1,0% [Симонов и др., 2000; Le Roex and Erlank, 1982]. Существуют и другие отличия между вулканитами хребта Шписс и острова Буве. На вариационных диаграммах SiO2, FeO
, Na2O, Al2O3 - FeO
/MgO составы образцов с острова Буве образуют самостоятельные тренды с более низкими концентрациями SiO2, FeO
и Na2O и более высокими Al2O3 субпараллельные аналогичным трендам серии вулканитов с хребта Шписс (рис. 2, 3, 4). Степень вторичных изменений базальтов сильно варьирует (п.п.п. 0,1-2,4%). В тоже время, как видно, например, из соотношений K2O - п.п.п. (рис. 5), отсутствует значимая корреляция между этими параметрами, что позволяет нам использовать содержания литофильных элементов как сравнительную характеристику магматических процессов. Вариации ряда литофильных элементов-примесей аналогичны таковым в базальтоидах хребта Шписс. Однако в наиболее дифференцированных разностях вулканитов с острова Буве, каковых не было встречено на хребте Шписс, отмечаются более высокие значения отношений некогерентных элементов ((La/Sm)n 2-3 [Симонов и др., 2000; Le Roex and Erlank, 1982], (Nb/Zr)n 1,4-1,7, Zr/Y~7,3). Среди других элементов-примесей характерны очень низкие концентрации хрома и никеля, что сближает их с вулканитами хребта Шписс и резко отличает от других базальтов этого района.
Базальты рифтовой зоны Африкано-Антарктического хребта (АфАХ) гораздо менее фракционированы, чем вулканиты острова Буве (FeO
/MgO 0,7-1,5), они не выходят за рамки собственно базальтов [Диденко и др., 1999; Симонов и др., 2000; Le Roex et al., 1983]. В тоже время для них характерна чрезвычайная пестрота составов. Среди изученной коллекции выделяются четыре группы. Немногочисленная группа образцов близка по составу гавайитам острова Буве, и на вариационных диаграммах (рис. 2, 3, 4) они попадают на соответствующие тренды изменения составов вулканической серии острова Буве.















