26489-1 (654376), страница 4
Текст из файла (страница 4)
Большая часть базальтов составляет группу, образующую самостоятельные непротяженные тренды на этих вариационных диаграммах. Не достигая высоких степеней дифференциации, базальты из этой группы имеют тенденцию к более быстрому накоплению калия и фосфора, чем гавайиты острова Буве, при этом для данных коэффициентов фракционирования содержания K2O в них наиболее высокие среди всех базальтов района тройного сочленения. Для данной группы также свойственны в целом более низкие значения CaO и глинозема и более высокие TiO2, а по вариациям в содержании натрия, а также по содержанию литофильных элементов-примесей Rb, Th, Nb, Ta [Симонов и др., 2000] и отношениям (La/Sm)n 1,8-2,3, (Nb/Zr)n 1,0-1,6 они близки к вулканитам хребта Шписс. В то же время по существенно более высокому содержанию хрома и никеля базальты данной группы резко отличаются от базальтов и острова Буве, и хребта Шписс.
Небольшая группа базальтов с заметно более низкими содержаниями TiO2, K2O и P2O5 не образует собственного тренда, не обнаруживая каких-либо закономерностей в вариациях составов. Наиболее близки они к обогащенным толеитам типа T-MORB.
Аномально высокие значения K2O (до 3,35%) в некоторых образцах станций S1824, S1825 и S1835 при низкой железистости обусловлены высокой степенью их вторичных изменений.
Подводная гора Шона по данным драгирования сложена разнотипными вулканитами (табл. 8). Наиболее широко здесь распространены породы с очень низкими содержаниями TiO 2 (0,6-1,2%). В совокупности они образуют пологий и протяженный тренд дифференциации от базальтов (обр. G9608/25, 27, 51, 55, G9609/3, 5, 11) через андезиты (обр. G9608/5, 13, 24, 29, 31, 37, 45) и дациты (обр. G9608/28, 43, 58) к липаритам (обр. G9608/8, G9609/12). Этот тренд резко отличается от трендов составов вулканитов хребта Шписс и острова Буве. При росте коэффициента дифференциации, сопровождающемся быстрым возрастанием содержания кремнекислоты, происходит очень медленное накопление TiO2 (до 1,2%), K2O (до 0,5%) и P2O5 (до 0,15%), которые в целом остаются низкими. Собственно базальты из этой группы имеют в сравнении с базальтами хребта Шписс несопоставимо более высокие концентрации хрома (около 500 г/т), более высокие содержания ванадия и скандия, заметно более низкие значения литофильных элементов (Sr, Zr, Y, Nb) и близкие содержания никеля. По мере дифференциации содержания Cr, V, Sc быстро уменьшаются, напротив, концентрации Sr, Zr, Y, Nb постепенно возрастают. Для этих вулканитов характерны низкие (Nb/Zr)n отношения 0,1-0,5. Среди этих вулканитов преобладают сильно пористые образцы типа шлаков, вулканических бомб, пемзы, однако есть и типичные среднепористые и слабо пористые породы. Они в основном свежие, некоторые сильно окислены.
Остальные вулканиты горы Шона представлены только базальтами, среди которых выделяется несколько малочисленных групп. Сильнопористый образец G9608/15 петрохимически близок к базальтам хребта Шписс, но имеет очень высокие концентрации хрома (535 г/т), что более сближает его с базальтами рифтовой долины АфАХ. Два из изученных базальтов (обр. G9608/45, 52) близки к обедненным разностям толеитов. Для них также характерны низкие содержания TiO2, но в отличие от основной группы вулканитов горы Шона они имеют еще более низкие концентрации калия. К слабо обогащенным разностям толеитов относятся базальты G9608/4 и G9609/2, которые отличаются от двух предыдущих групп более высокими концентрациями K2O (0,40%) и TiO2. Встречены два необычных состава базальтов (обр. G9608/3, 46). Первый из них - существенно оливин порфировый базальт, что и нашло отражение в низких содержаниях кремнекислоты и глинозема и в аномально высоких концентрациях хрома и никеля. По уровню и соотношению в нем содержаний калия и фосфора он близок к обогащенным базальтам станции G9610. По этим параметрам к базальтам этой станции близки и измененные образцы G9608/24, 46. Следует отметить, что все базальты, отличающиеся от основной группы вулканитов горы Шона практически непористые, часть из них заметно изменена, некоторые несут признаки непосредственного отрыва от склона.
В пределах линейного поднятия, протягивающегося от южной части хребта Шписс в сторону острова Буве и, видимо, структурно связывающего их, поднято несколько базальтов существенно различного состава (станция G9622). Большинство образцов это сильно дифференцированные высоко железистые (FeO
/MgO = 2,5) базальты, обогащенные TiO2 (3,8-3,9%), K2 O (1,7-1,8%), P2O5 (0,6%), Na2O (3,9-4,3%) (табл. 8). Отношения (Nb/Zr)n в них равны 1,3. По этим и другим параметрам рассматриваемые базальты, как видно из графиков вариаций составов (рис. 2-4), очень близки к тем базальтам рифтовой долины АфАХ, которые отличаются повышенными концентрациями K2O и P2O5. При этом следует отметить, что образец G9622/2 имеет очень высокие концентрации хрома.
Исключением является образец G9622/6, не выделяющийся среди других представителей этой группы ни характером вторичных изменений, ни текстурой. Он имеет низкие содержания TiO2 (0,88%), Na2O (2,18%), K2O (0,28%), P2O5 (0,07%) и железистость 1,8, что сближает его с вулканитами поднятия Шона.
Отличительной особенностью вулканических пород, драгированных на склонах разлома Буве, является чрезвычайное разнообразие петрографических типов, поэтому и петрохимические составы пород сильно различаются. В целом это слабо и умеренно дифференцированные породы с несколько пониженным содержанием SiO2 (44-46%) [Симонов и др., 2000]. Степень вторичных изменений (п.п.п. 0,8 до 1,8%) соответствует таковой в базальтах САХ. Из диаграммы TiO2 - FeO
/MgO (рис. 2) видно, что базальты дают два существенно различных тренда. Подавляющее большинство попадает на тренд дифференциации базальтов САХ с вариациями TiO2 от 1,0% до 2,0%. Для них характерны отношения (La/Sm)n 0,7-1,2 и (Nb/Zr)n 0,6-1, не выходящие за пределы составов базальтов САХ. Поведение базальтов второй группы соответствует тренду характерному для базальтов горы Шона, где содержания TiO2 не превышают 1% при FeO
/MgO 1,6-2,6. Отношения (La/Sm)n и (Nb/Zr)n в одном из представляющих эту группу образцов составляют соответственно 0,93 и 0,81.
В некоторых базальтах разлома Буве отмечается относительно большое количество вкрапленников плагиоклаза. Это нашло отражение в их химическом составе - в повышенных концентрациях CaO и Al2O3.
Основная часть базальтов из Восточной области дислокаций (табл. 8), драгированных на станции G9617, характеризуется низкой степенью фракционирования 1,2-2,2 при высоком содержании TiO2 (в среднем 2,3-2,4%). Низкие K2O (0,1-0,3%) и P2O5 (0,1-0,25%), (La/Sm)n и (Nb/Zr)n соответственно 1,2 и 0,7-0,9 сближают эти базальты с таковыми из района САХ. Все эти базальты отличаются широким развитием хлорита и ряда других относительно высокотемпературных вторичных минералов, сформировавшихся при повышенных Р-Т условиях, вероятно, в глубине базальтового разреза. Это отразилось и на их составе, для данных базальтов свойственно пониженное содержание CaO и у некоторых повышенное - натрия.
Исключение составляют образцы G9617/01 и G9617/06 с существенно повышенным K2O (1,0-1,4%), P2O5 (0,3-0,4%), (La/Sm)n и (Nb/Zr)n соответственно 2,5 и 1,5-1,6. В этом отношении они близки к составу базальтов из рифтовой долины АфАХ, но по крайне низким концентрациям хрома совпадают с таковыми хребта Шписс и острова Буве. Эти базальты отличаются от основной группы и по типу вторичных изменений. В них развиты в небольшом количестве только продукты низкотемпературных преобразований.
Базальты в пределах самого восточного сегмента АмАХ можно разделить на 2 группы. Первая характеризуется единичными образцами G9604/54, G9602/03 с повышенными содержаниями TiO2 (2,2-3,1%) и P2O5 (0,2-0,4%) при относительно низкой железистости - 1,6-1,9 (табл. 8), и (Nb/Zr)n 0,4-0,6, (La/Sm)n 0,9-2,1. В целом они близки к слабо обогащенным базальтам южного окончания САХ. В этих базальтах относительно широко развит хлорит. Основная группа базальтов в различной степени дифференцирована (FeO
/MgO 1,0-2,4), при этом содержания TiO2 (0,8-1%) очень низкие, а K2O (0,4-0,53%), P2O5 (0,08-0,09%), (Nb/Zr)n 0,3. Эти составы ложатся на тренд дифференциации вулканитов горы Шона. Среди них обнаружены и более кислые разности с SiO2 62%, которые также попадают на этот тренд. Необходимо отметить, что в целом эти базальты менее изменены или даже свежие. Они имеют различный облик от непористых до сильно пузыристых, похожих на вулканические бомбы.
Базальты, поднятые в пределах поднятия, находящегося между двумя трогами, отходящими от южного окончания САХ (станция G9610), относятся к умеренно и сильно дифференцированным породам, FeO
/MgO в которых варьирует от 1,2 до 4 (табл. 8). Они подразделяются на 2 группы. Первая (обр. G9610/1, G9610/12) характеризуется низкими содержаниями литофильных элементов (K2O 0,3%, P2O5 0,1-0,2%) и низкими (Nb/Zr)n отношениями, соответствуя базальтам N-MORB САХ. Вторая группа существенно более обогащена K2O 1,1-1,4%, P2O5 0,7-0,9% и имеет повышенные (Nb/Zr)n 1,32. При этом в образцах G9610/8, G9610/21, G9610/31 при низкой степени фракционированности отмечаются аномально высокие содержания P2O5 (0,7-0,8%), Sr (500-600 г/т). Их другая особенность - слабые вариации содержаний TiO2, Al2O3 и CaO при дифференциации. Составы обогащенных базальтов на вариационных диаграммах образуют самостоятельные тренды, не совпадающие с таковыми для вулканитов хребта Шписс и острова Буве. По содержаниям Sr, Rb, Ba они попадают в поля составов базальтов аномалии 12-14o в.д. [Le Roex et al., 1992], но отличаются более низкими концентрациями Y и Nb. Базальты двух петрохимических групп различаются и по характеру вторичных изменений. Если первые практически свежие с небольшим количеством глауконита, то вторые содержат смектит, что характеризует их в качестве представителей более глубоких частей базальтового разреза.
В зоне сочленения палеоструктур Американо- и Африкано-Антарктических и Срединно-Атлантического хребтов (станции G9619, G9620 и G9621) подняты вулканиты трех геохимических типов (табл. 8). Первый тип - это слабо дифференцированные базальты, отвечающие N-MORB и не выходящие за пределы колебаний составов базальтов САХ в районе ТСБ (FeO
/MgO 1-1,5, K2O 0,2-0,3%, P2O5 0,07-0,15%, TiO2 1,4-1,6%, (Nb/Zr)n 0,5-0,7). Вторая группа базальтов отличается повышенными содержаниями литофильных элементов (K2O и P2O5 ) и TiO2 (2,5-3,0%), характерными для слабо обогащенных толеитов, в то же время они имеют сравнительно низкие отношения (Nb/Zr)n. Некоторые из этих базальтов характеризуются очень высокими концентрациями хрома (500-800 г/т). Третья группа (G9619/2, 5, 10, G9620/23 и G9621/1, 4) с низкими содержаниями TiO2 (0,6-1,2%) и P2O5 (0,07-0,1%) имеет также низкие (Nb/Zr)n отношения (0,2-0,3). Среди них встречены высоко дифференцированные разности, вплоть до дацитов. Вулканиты аналогичного состава широко распространены в районе горы Шона. Проанализированы в основном слабо измененные образцы, но представители третьей группы отличаются своей повышенной пористостью от базальтов двух первых групп.
Основные петро-геохимические группы базальтов, их пространственное распространение и геодинамические обстановки образования
Проведенное исследование показывает, что в районе тройного сочленения Буве распространены очень разнообразные по составу вулканиты, среди которых преобладают базальты. Для их классификации и разделения на группы мы руководствовались следующими соображениями. К элементам, характеризующим мантийный источник первичных расплавов, относятся титан, фосфор, калий и ряд других некогерентных элементов (Nb, Zr, Y), отношения которых слабо зависят от процессов частичного плавления и фракционирования. Поэтому концентрации и отношения этих элементов являются главными критериями для подразделения вулканитов на группы. В то же время мы учитывали, что калий достаточно подвижен при подводном выветривании базальтов, поэтому породы с высоким содержанием воды не принимались во внимание при выделении групп; а поведение фосфора и титана при очень высоких степенях дифференциации определяется осаждением из расплава апатита и Fe-Ti фаз. Последнее накладывает отпечаток и на распределение таких несовместимых элементов как Nb, Zr, Y. К наиболее важным параметрам, используемым при характеристике мантийных источников, относятся изотопные отношения и распределение редкоземельных элементов в вулканитах. Мы не проводили собственных исследований в этом направлении, но в ряде случаев имеются опубликованные данные по той или иной группе пород.















