geod (654166), страница 3

Файл №654166 geod (Геодезические опорные сети. Упрощенное уравнивание центральной системы) 3 страницаgeod (654166) страница 32016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

При уравновешивании геодезических сетей может возникать несколько условий, выражаемых математическими формулами. В общем виде эти формулы можно выразить уравнениями:

a1(1)+a2(2)+…..+an(n)+f1=0

b1(1)+b2(2)+…..+bcn(n)+f1=0

c1(1)+c2(2)+…..+cn(n)+f1=0

где (1), (2),…(т)- искомые неизвестные поправки к углам: a1 ,a2an ; b1 ,b2bn ; c1 ,c2cnкоэффициенты, f1 , f2 , f3 – свободные члены (невязки).

Для уравнений по способу наименьших квадратов надо уравнение умножить на удвоенные коррелаты с минусом (-2k1 ,-2k2 , -2k3 ) и сложить с условием минимума суммы квадратов поправок (1)2+(2)2+….+(n)2=min.

Общий вид уравнения:

a1(1)+a2(2)+….+an(n)+f=0

Здесь a1 , a2 ,…an – коэффициенты при искомых поправках (1), (2), (3), (n);

f – невязка. Это уравнение надо решать под условием, чтобы сумма квадратов поправок равнялась минимуму.

Вычисление искомых поправок по способу наименьших квадратов выполняется следующим образом:

  1. вычисляют коэффициент k – кореллату по формуле

k=-(f/a2)

т.е. невязка с обратным знаком делится на сумму квадратов коэффициентов при поправках уравнения.

  1. поправки решаемого уравнения вычисляют по формулам:

(1)=a1k; (2)=a2k; (n)=ank

В уравнениях поправок фигур треугольников, горизонта и азимутов при искомых поправках коэффициенты равны a=1. Поэтому a2=1. В уравнении поправок треугольников a=3 и k=-(f/3).

Поправки равны, т. е. (1)=(2)=(3)=-(f/3)

В уравнениях поправок горизонта и азимута коэффициенты a=1 и a2=n, где n-число поправок уравнения поровну распределяется с обратным знаком на углы. В уравнении поправок синусов и сторон коэффициенты ai – изменении логарифмов синусов не равных единицы, a2 имеет большое значение.

  1. Виды условных уравнений в триангуляции.

Задачи уравновешивания тригонометрической сети состоит в отыскании поправок в измеренные углы, которые наилучшим образом удовлетворили бы теоретические условия сети, а измеренные величины после введения в них поправок получили бы вероятнейшее значение. Треугольники триангуляции образуют центральные системы, которые должны удовлетворять теоретические условия геометрии.

1. Условия уравнивания фигур.

  1. Условное уравнение фигур.

Сущность: Сумма углов 1,2,3 каждого треугольника должна быть равна 180 градусам, но на практике бывают невязки которые вычисляют по формуле:

2

а.=1+2+3-180

3

поправка равна: /3

1

б. 1+(1)+2+(2)+3+(3)-180=0

После вычитания формулы а. из формулы б. получим условное уравнение поправок треугольников

(1)+(2)+(3)+=0

Предельная невязка углов треугольников определяется формулой:

пред=2.5m3

где mb- средняя квадратическая ошибка углов.

Таких уравнений в сети возникает столько сколько треугольников с измеряемыми углами.

  1. Условие уравнивания горизонта.

Сущность: в центральной системе при точке ТО сумма углов  должна быть равна 360. Но практически будет невязка:


4

5

3

1

2


а. 1+2+3+4+5-360=

поправка будет равна: /5

б. 1+(1)+2+(2)+3+(3)+4+(4)+5+(5)-360 =0

Уравнение горизонта мы получим после вычитания формулы а. из б.

(1)+(2)+(3)+(4)+(5)+=0

Предельная невязка углов  определяется формулой:

пред=2.5mn

где n – количество углов при цетре.

  1. Условное уравнение полюса:

Сущность: в каждом треугольнике должно быть выполнено условие пропорциональности сторон и противолежащих углов

bca/abc=1 это условие полюса в точке O для центральной системы.

Заменяя отношение сторон синусом противоположных углов, исправленных поправками. После логарифмирования и разложения функции в ряд мы получим:

W=lg(sin1sin3sin5/sin2sin4sin6)

Окончотельный вид полюсного условного уравнения будет выглядеть так:

1(1)+3(3)+5(5)-2(2)-4(4)-6(6)+W=0

Величина невязки зависит от ошибок в связующих углах

Wпред=2.5*m*()

  1. Условное уравнивание сторон.

Условие сторон возникает в цепи треугольников расположенной между двумя сторонами исходной цепи. Геометрический смысл состоит в том, что при последовательном решении треугольников от начальной стороны должна быть получена конечная сторона.

1(x1)+2(x2)+3(x3)+4(x4)-1(y1)-2(y2)-3(y3)-4(y4)+WD=0

Wdпред=2.5*m*2m+m2(2+2)

  1. Условное уравнение координат

Условие координат возникает в сети, если в ней может быть выделен ход, заключенный между двумя твердыми точками.

Это условие заключается в том, чтобы сумма приращений по каждой координатной оси была равна разности координат конечной и начальной точек.

Невязки вычисляются по формуле:

x=x-(xк-xн); y=y-(yк-yн)

сумма поправок приращений должна равнятся нулю.

xBC+xCD+XDE+x=0

yBC+yCD+yDE+=0

  1. Упрощенное уравнивание центральной системы.

В центральной системе возникает условное уравнение фигур, горизонта и полюса. Математически эти условия выражаются уравнениями поправок. Число условных уравнений фигур равно числу треугольников:

(x1)+(y1)+f1=0

(x2)+(y2)+f2=0

(x3)+(y3)+f3=0

(x4)+(y4)+f4=0

(x5)+(y5)+f5=0

Одно условное уравнение горизонта имеет вид:

(1)+(2)+(3)+(4)+(5)=f=0

Условное уравнение полюса согласно формуле имеет вид:

1(x1)+2(x2)+3(x3)+4(x4)+5(x5)- 1(y1)-2(y2)-3(y3)-4(y4)-5(y5)+W=0

Таким образом в этой центральной системе возникает семь условных уравнений. При этом распределение невязок и отыскание поправок по способу наименьших квадратов все уравнения надо решать совместно – это требует больших вычислений, поэтому в сетях сгущения уравновешивание выполняется упрощенным способом. Упрощение состоит в том, что система всех уравнений разделяется на однотипные группы. Для наиболее простого способа уравновешивания к первой группе относят условные уравнения фигур и решают их по способу наименьших квадратов. В этой группе уравнений каждоя неизвестная искомая поправка в уравнения входит один раз, т.е. каждое уравнение имеет три искомых неизвестных, не входящих в другие уравнения. Следовательно, каждое уравнение можна решать отдельно по способу наименьших квадратов. Решение такого уравнения с коэффициентами при неизвестных, равными единици, было описано.

Согласно формуле искомые поправки равны между собой и равны f/n, где f- невязки, а n- число углов.

Поэтому в условном уравнении фигуры треугольника n=3 поправки в углы треугольников выражаются формулами:

(x1)’=(y1)’=(1)’=-f1 /3

(x2)’=(y2)’=(2)’=-f2 /3

(x3)’=(y3)’=(3)’=-f3 /3

(x4)’=(y4)’=(4)’=-f4 /3

(x5)’=(y5)’=(5)’=-f5 /3

Решение первой группы уравнений дает первичные поправки, обозначенные одним штрихом. Затем приступают к решению второй группы условных уравнений, т.е. уравнение горизонта. При упрощенном уравновешивании получают вторые поправки к углам.

Условное уравнение примет вид:

(1)”+ (2)”+ (3)”+ (4)”+(5)”+f=0

Здесь невязка вычисляется по первично исправленным углам, т.е.

f=[1+(1)’]+ [2+(2)’]+ [3+(3)’]+ [4+(4)’]+ [5+(5)’]-360

Условное уравнение горизонта имеет коэффициенты при неизвестном, равные единице, поэтому решение уравнения по способу наименьших квадратов выполняются так же, как и условие фигур, невязка распределяется поровну на все углы и поправка равна -f /n, следовательно, вторичные поправки к углу будут:

(1)”= (2)”= (3)”= (4)”= (5)”-f” /n

Чтобы не нарушать условие фигур, выполненные введением первых поправок, надо и в связующие углы x, y каждого треугольника ввести вторичные поправки, которые должны быть равны половине второй поправки к углу с обратным знаком:

(x1)”=(y1)”=-(1)”/2

(x2)”=(y2)”=-(2)”/2

Результаты этих поправок записаны в таблице. После решения условных уравнений фигур и горизонта приступают к решению полюсного условного уравнения, что дает третьи поправки к углам, но при условии, чтобы условия фигур и горизонта не были нарушены. Условное уравнение полюса примет вид:

1(x1)”’+2(x2)”’+3(x3)”’+4(x4)”’+5(x5)”’-1(x1)”’- 1(x1)”’-1(x1)”’-1(x1)”’ --1(x1)”’+W=0

здесь 1, 2, …5 перемена логарифмов синусов углов x, входящие в числитель свободного члена W, а 1, 25 – перемены логарифмов синусов углов y, входящие в знаменатель свободного члена. Невязка, т.е. свободный член уравнения, выражается формулой:

Здесь связующие углы x, y каждого треугольника представляют углы, исправленные предыдущими двумя поправками. Чтобы решением полюсного уравнения не нарушить условие фигур и горизонта, надо ввести дополнительное условие, согласно которому в каждом треугольнике связующие углы должны иметь равные поправки, но с разными знаками, т.е. (xi)”’=-(yi)”’. Тогда полюсное уравнения примет вид.

a1(x1)”’+ a2(x2)”’+ a3(x3)”’+ a4(x4)”’+ a5(x5)”’+W=0

a1=(1+1), …

для решения этого уравнения по способу наименьших квадратов надо добавить условие: (x1)”’2+(x2)”’2+(x3)”’2+(x4)”’2+(x5)”’2=min

для нахождения минимума функции возьмем производные и прировняем их к нулю.

f’x1=2(x1)”’-2ka1=0

Характеристики

Тип файла
Документ
Размер
179,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее