191 (641515), страница 2
Текст из файла (страница 2)
Тропосфера Венеры (нижний «этаж» атмосферы, где температура почти линейно падает с высотой) имеет высокую плотность и обладает значительной протяженностью. Так, ниже уровня, соответствующего «нормальным» земным условиям по давлению и температуре, находится своеобразный газовый океан 50-километровой глубины, состоящий из сильно сжатого и нагретого до высокой температуры газа. Даже если бы атмосфера Венеры была свободна от аэрозолей, попытка увидеть поверхность планеты сквозь столь значительную толщу газа была бы безрезультатной. Благодаря сильному рассеянию (и частичному поглощению) света атмосферой, последняя практически непрозрачна для внешнего наблюдателя во всем диапазоне частот, кроме радиоволн. Значительно прозрачнее атмосфера в диапазоне сантиметровых и дециметровых радиоволн, где и удалось впервые зарегистрировать излучение нагретой поверхности планеты.
Сказанное не означает, однако, что солнечный свет не проникает глубоко в атмосферу; в рассеянном виде он достигает поверхности планеты.
Схема строения атмосферы Венеры выглядит следующим образом. В интервале высот 47—70 км над поверхностью расположен протяженный слой тумана средней плотности, который по традиции называют облаками Венеры. От земных они отличаются не только низкой плотностью, малым массовым содержанием и микроскопическими размерами частиц, но ивесьма экзотическим составом: это мельчайшие капли высококонцентрированной серной кислоты. Облаков водного состава на Венере не бывает, а относитеьное содержание водяного пара в атмосфере очень мало, в 50 – 70 раз меньше, чем в земной атмосфере.
Верхняя граница облаков у 65—70 км имеет размытый характер и постепенно переходит в надоблачную дымку, поднимающуюся еще на 15—20 км. Дымка имеет непостоянную плотность, которая подвержена сильным изменениям с характерным временем около года или менее. Нижняя граница облаков у 47 км выражена весьма четко; но и ниже уровня 47 км имеется слабая дымка, простирающаяся вниз также километров на 15. Ниже 30 км атмосфера Венеры практически свободна от аэрозолей.
Как показывают измерения, температура у поверхности на уровне радиуса 6051,6 км составляет 735 К, давление 92 бар. С высотой температура и давление быстро падают. На уровне примерно 53 км условия близки к земным «нормальным»: от уровня с Т=293 К, где р~0,5 бар, до Т=340 К, где р =1 бар.
Высокие температуры у поверхности определяются одной из главных особенностей атмосферы планеты: сильным парниковым эффектом. Солнечная радиация проникает глубоко в атмосферу и поглощается поверхностью и атмосферой. Однако для длинноволнового теплового излучения атмосфера малопрозрачна, что и создает высокие температуры у поверхности.
Факт высокой температуры поверхности был установлен еще до начала зондирования атмосферы Венеры космическими аппаратами, по радиофизическим исследованиям планеты (Майер, 1963). Как любое нагретое тело, поверхность излучает значительную мощность в радиодиапазоне. Поэтому измерение яркостной температуры радиоизлучения можно связать с термодинамической температурой поверхности. К первым серьезным исследованиям этого рода относятся работы Майера и др. (1957, 1958).
Особенно большое число радиоастрономических измерений было проведено с 1962 по 1970 г. Далее начались прямые измерения на поверхности и проблема утратила актуальность. Наиболее высокие температуры наблюдаются в диапазоне 3—15 см, до 660 К.
Химический состав атмосферы
Подробные сведения об истории исследований состава атмосферы планеты можно найти в монографии «Венера» (Цан и др., 1983), а также в более ранних работах и изданиях: Л. Янг (1974), Кузьмин и Маров (1974), Мороз (1981) и других. В изучении состава атмосферы большую роль сыграли как космические, так и традиционные наземные, прежде всего — спектрометрические исследования (Конн и др. 1967).
Основная составляющая атмосферы планеты — углекислый газ. Спектрометрически он был отождествлен в атмосфере Венеры еще в 1932 г., в работе Адамса и Данхэма (1932). Однако до полета «Венеры-4» в 1967 г. оценки его содержания значительно колебались. Измерения «Венеры-4» и последующие более точные измерения «Венеры-5 и -6» практически закрыли вопрос об основных составляющих.
Углекислый газ. Атмосфера Венеры почти полностью состоит из углекислого газа, который выделился из коры планеты в процессе ее дегазации. На первый взгляд, на Венере запасы углекислого газа намного больше, чем на Земле. Различие снижается на 2 порядка, если учесть примерно в 60 раз большее количество углекислого газа, растворенного в океанах Земли. Растворенный газ находится в динамическом равновесии с СО2 в атмосфере и демпфирует изменения его содержания. Постоянная времени обмена для океана близка к 7 годам. Однако подлинным резервуаром углекислого газа являются карбонаты в осадочных породах Земли.
Азот. Причина повышенного содержания азота в атмосфере, как предполагается, так же лежит в высокой температуре поверхности, из-за чего весь азот Венеры перешел в атмосферу.
Средняя и верхняя атмосфера
На Венере тропопауза — переход от тропосферы к стратосфере — совпадает с верхней границей облаков. Тропопауза в земной атмосфере характеризуется переходом к очень малому вертикальному градиенту температуры. Стратосфера Земли отличается быстрым ростом температуры с высотой в интервале 35—55 км, что объясняется присутствием озона, поглощающего коротковолновую часть солнечной радиации. «Озоновый» максимум температур приходится на интервал 40—55 км, что придает земному профилю характерный вид.
В атмосфере Венеры озон практически отсутствует, и выделение области стратосферы достаточно условно. Главная ее особенность — преобладание высокоактивных фотохимических реакций, происходящих под действием коротковолновой части солнечной радиации. В стратосфере образуются основные продукты фотохимии Венеры, в том числе — сернокислотный аэрозоль, образующий облака планеты. Температура и давление в стратосфере Венеры падают с высотой, причем высотная зависимость имеет сложный характер. На уровне 70 км температура и давление близки к 210 К и 34 мбар, а у 110 км — к 170 К и 2х10-3 мбар (в среднем). Падение температуры с высотой показывает, что основное условие стратификации не выполняется, поэтому название «стратосфера» не вполне годится для рассматриваемой части атмосферы. Более подошло бы название «фотохемосфера».
Если температура в области стратосферы слабо зависит от времени суток, то в интервале высот 105—130 км суточные ее изменения очень велики. Называть эту область мезосферой можно только условно, поскольку в земной мезосфере (высоты 50—80 км), температура значительно падает с высотой, в то время как изменения температуры в атмосфере Венеры на соответствующих по характеристикам высотах (110— 130 км) имеют суточную зависимость и с высотой могут, как падать, так и возрастать.
Далее, термосфера Венеры значительно холоднее. Несмотря на то, что плотность потока радиации на Венере вдвое больше, чем на Земле, дневные температуры области, расположенной над мезосферой Венеры, очень невысоки, всего 300—350 К. Еще удивительнее оказались ночные температуры в той же области, составляющие всего 100—130 К причем переходы от дневных температур к ночным происходят очень быстро, практически в сумеречной зоне, за 5—8 земных часов. Название «термосфера», очевидно, не годится для верхней атмосферы Венеры. Было предложено два раздельных наименования: термосфера — для дневной части и криосфера («холодная сфера») — для ночной части атмосферы выше 160 км. Механизм быстрого охлаждения криосферы является предметом исследований.
Резкое понижение температуры в криосфере ночью приводит к быстрому падению давления.
Изменение давления должно сопровождаться перетеканием газа (на рассматриваемых высотах — с дневной на ночную сторону) и переходом энергии из потенциальной в кинетическую, так как потоки газа опускаются. Скорость охлаждения ночной стороны (криосферы) зависит от количества газа, перетекающего с дневной стороны. Итак, один из выводов, который можно сделать из рассмотрения особенностей строения атмосферы Венеры, заключается в том, что вблизи уровня 100 км проходит естественный раздел между двумя частями атмосферы: ниже 100 км суточные изменения параметров незначительны, выше — наблюдаются сильно выраженные суточные вариации температуры, плотности, давления. Кроме того, в интервале 140—180 км (основание гетеросферы) наблюдается суточная зависимость состава атмосферы.
Ионосфера. Взаимодействие с солнечным ветром
Подобно Земле, Венера обладает ионосферой— областью высокой плотности заряженных частиц, электронов и ионов. Концентрация заряженных частиц на дневной стороне ионосферы лишь в несколько раз меньше, чем в ионосфере Земли. Происхождение дневной ионосферы связано с поглощением в верхней атмосфере наиболее коротковолновой части ультрафиолетовой солнечной радиации (вакуумного ультрафиолетового излучения). В результате фотоионизации газа фотонами большой энергии возникают потоки фотоэлектронов, скорость которых намного превышает тепловую. Состав ионов зависит от состава нейтральной атмосферы, возбуждаемой излучением, а также реакциями, которые связывают образовавшиеся ионы, и массовыми потоками последних в ионосфере. В целом ионосфера остается нейтральной.
Значительно большую высотную протяженность имеет дневная ионосфера. Непостоянный профиль дневной ионосферы Венеры связан с низким положением ионопаузы, что является одной из главных особенностей ионосферы планеты.
Причина заключается в отсутствии у Венеры сколько-нибудь значительного дипольного магнитного момента. Магнитное поле Земли образует магнитосферу, защищающую ее от прямого воздействия солнечного ветра. Положение ударной волны, где газодинамическое давление солнечного ветра становится равным магнитному давлению, для Земли можно считать общеизвестным – на расстоянии 13 радиусов планеты с подсолнечной стороны. Поэтому ионосфера Земли закрыта от солнечного ветра – ионизованной плазмы, движущейся со скоростью около 400 км/сек. Отсутствие магнитного дипольного поля у Венеры приводит к тому, что сама ионосфера действует как препятствие на пути солнечного ветра, образуя ударную волну.
Магнитные «жгуты» являются еще одним источником высокой температуры на планете. «Жгуты» возникают в виде своеобразных магнитно-токовых трубок. Благодаря магнитной гировязкости, «жгуты» сохраняют цельность и ведут себя как своеобразные длинные канаты, толщиной в несколько десятков километров. Под действием магнитного поля ионопаузы и ионного слоя «жгуты» растягиваются за концы и сред ней частью вторгаются в ионосферу, сохраняя свое сильное магнитное поле. Взаимодействие «жгутов» с ионосферой приводит к разогреву электронного компонента. Предполагается, что это — один из основных источников разогрева.
Рис. Схема процессов в ионосфере и ее взаимодействия с солнечным ветром.
Вдоль ионопаузы проходит токовый слой, отделяющий область сильного магнитного поля от ионосферы. При локальном воздействии солнечного ветра на ионопаузе образуется желоб, стенки которого могут замкнуться с образованием токовой трубки, охватывающей магнитное поле. Трубка с протекающим по ее поверхности током далее погружается в ионосферу. В таких же нестабильностях, но выгнутых в сторону переходного слоя, могут образоваться «пузыри» ионосферы, также охваченные током. Такие «пузыри» далее уносятся солнечным ветром. Наряду с этим, солнечным ветром могут захватываться и большие объемы плазмы ионосферы в виде отошедших облаков и вытянутых стримеров.
ЭЛЕКТРИЧЕСКАЯ АКТИВНОСТЬ АТМОСФЕРЫ
Поиск молний в атмосфере планеты
До конца 1978 г. грозовые разряды в атмосфере Земли были уникальным явлением, не известным нигде более на других планетах.
Радиоизлучение Венеры открыто в конце 50-х годов, с началом ее радиоастрономических исследований. Уже в работах Крауса (1956, 1957) предполагалось, что всплески радиошумов от Венеры связаны с молниями в атмосфере планеты. На самом деле радиоизлучение исходит, главным образом, от сильно нагретой поверхности планеты и горячих нижних слоев тропосферы и к электрическим разрядам отношения не имеет. Анализ состава атмосферы, выполнявшийся аппаратами серии «Венера» с 1967 по 1975 г., а позже «Венерой-11—14» и зондами аппарата «Пионер — Венера», привел к проблеме образования некоторых малых газообразных составляющих атмосферы. Можно предположить, что их происхождение связано с электрическими разрядами в атмосфере.
В конце 1978 г. к Венере приблизились космические аппараты «Пионер — Венера», «Венера-11» и «Венера-12», а в начале 1982 г.— «Венера-13» и «Венера-14». Исследования в 1978г. выполнялись с помощью приборов «Гроза» и OEFD, а в 1982 г.— прибором «Гроза-2». Благодаря исследованиям электрической активности Венеры, присутствие частых электрических разрядов в атмосфере Венеры более не вызывает сомнений. Однако выяснение их природы требует дальнейших исследований, так как обстоятельства возникновения разрядов, похоже, связаны с рядом не вполне понятных явлений. Так 21 декабря 1978 г. прибор «Гроза» на «Венере-12», а 25 декабря — на «Венере-11», спускаясь в атмосфере планеты, зарегистрировал множество импульсов электромагнитного поля, по характеру весьма похожих на атмосферики удаленных земных молний.
Почти одновременно поступили сообщения о странных явлениях, которые, возможно, имеют отношение к той же проблеме. На высотах около 12 км на всех зондах аппарата «Пионер — Венера» были повреждены некоторые датчики, установленные независимо и на разных приборах. В качестве вероятной причины назывались электрические разряды.
Связь молний с генерацией отдельных химических компонентов в атмосфере Венеры стала предметом анализа многих работ. Сообщения об экспериментах на «Венерах» и аппарате «Пионер — Венера», стимулировали интерес к проблеме.
Где происходят разряды?
Чтобы понять, как возникают разряды в атмосфере Венеры и каков механизм накопления зарядов, необходимо знать, на какой высоте происходит это явление. Как уже говорилось, радиорефракция свидетельствует в пользу низкорасположенного источника, но пока опираясь на экспериментальные данные, указать определенную высоту источника поля не удается. Предположение о том, что разряды происходят в облачном слое, основано на следующих соображениях. Хорошо известно, что большие пространственные заряды и связанные с ними молнии возникают почти исключительно в грозовых облаках. В некоторых случаях наблюдается накопление зарядов в зимних облаках («зимние молнии»). Известны также молниевые разряды в пылевых бурях и над извергающимися вулканами. Наконец, существует малоисследованное явление образования молний (и, следовательно, присутствия больших зарядов) при безоблачной атмосфере—«гром с ясного неба».
На Земле наибольшие заряды наблюдаются в облаках с частицами сложной структуры, типа гирлянд, и с каплями переохлажденной воды. Напряженность электрического поля велика также для облаков из ледяных кристалликов;
если же облако состоит только из жидких капелек, напряженность оказывается низкой.
В облаках Венеры частицы жидкие и, по-видимому, имеют один и тот же состав, поэтому напряженность поля должна быть небольшой. Кроме того, ряд авторов высказывают сомнения относительно возможности накопления пространственного заряда в среде, содержащей аэрозоль из сильного электролита — серной кислоты.
По существу, доводы в пользу локализации молний в облачном слое этим исчерпываются.