54 (641396)

Файл №641396 54 (Системы стабилизации и ориентации)54 (641396)2016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Реферат

В данном курсовом проекте изучаются методы анализа и синтеза систем стабилизации и возможность применения для этого математического пакета MAPLE V. Разработана библиотека процедур, позволяющая облегчить работу студентов при выполнении курсового проекта по дисциплине «Системы стабилизации и ориентации».

Пояснительная записка содержит 36 листов, 3 приложения и 7 рисунков.

Содержание

Введение
1 Обзор литературы
1.1 Получение дискретной модели непрерывной системы…….
1.2 Передаточные функции непрерывных и дискретных
систем………………………………………………………….
1.3 Частотные характеристики непрерывных и
дискретных систем...........................................................…….
1.4 Анализ устойчивости непрерывных и
дискретных систем…….....................................................
    1. Синтез цифровых систем управления по желаемым
частотным характеристикам разомкнутой системы........…
2 Разработка библиотеки процедур в среде Maple
2.1 Получение дискретной модели непрерывной системы........
2.1.1 Процедура diskretA........................................................
2.1.2 Процедура diskretB........................................................
2.2 Получение матрицы передаточных функций………………
2.2.1 Процедура permatr.........................................................
2.3 Построение частотных характеристик дискретной и
непрерывной систем………………………………………….
2.3.1 Процедура afch................................................................
2.3.2 Процедура lach................................................................
2.3.3 Процедура lfch................................................................
2.4 Анализ устойчивости дискретной и непрерывной систем
2.4.1 Процедура klark..............................................................
2.4.2 Процедура gurvitz...........................................................

2.4.3 Процедура ust..................................................................

2.5 Синтез дискретных систем

2.5.1 Процедура sintez1...........................................................

2.5.2 Процедура sintez2...........................................................

3 Апробация библиотеки процедур SSO.....................................

Заключение......................................................................................

Список литературы.........................................................................

Введение

В настоящее время в промышленности и сельском хозяйстве применяются десятки тысяч систем автоматического регулирования (САР), которые обеспечивают высокую эффективность производственных процессов. Поэтому теория автоматического регулирования изучается во всех высших учебных заведениях в качестве одной из базовых дисциплин. На её основе в дальнейшем читаются такие курсы, как теория автоматического управления, автоматизированные системы переработки информации, управление технологическими и организационно-экономическими процессами, теория автоматизированного проектирования систем и их математическое обеспечение, а также целый ряд дисциплин специального назначения. Объекты и устройства систем регулирования отличаются по своей физической природе и принципам построения, поэтому проектировщику необходимо не только иметь хорошую подготовку в области механики, электроники, электротехники и вычислительной техники, но и уметь учитывать специфические особенности объекта. С целью овладения практическими навыками использования методов теории автоматического регулирования будущие специалисты в процессе обучения выполняют домашние задания, курсовые и дипломные работы по проектированию систем управления конкретными объектами.

Трудность выполнения проектных работ в значительной степени определяется сложностью математического аппарата, используемого при описании объектов и систем автоматического регулирования. Поэтому для облегчения решения задач теории автоматического регулирования имеет смысл создание процедур, реализующих ряд алгоритмов проектирования систем. Они позволяют формировать обобщенные модели элементов в дискретной форме и матрицы передаточных функций; строить амплитудно-фазовые частотные характеристики (в обычном и логарифмическом масштабах) и др.

1 Обзор литературы

1.1 Получение дискретной модели непрерывной системы

При проектировании непрерывных, дискретно-непрерывных и дискретных САР необходимо располагать математической моделью элемента (объекта). При высоких порядках моделей удобно пользоваться уравнениями, составленными во временной области и записанными в векторно-матричной форме. Рассмотрим одну из наиболее часто встречающихся форм представления многоконтурных стационарных линейных элементов (объектов). При этом будем считать, что в линейный объект регулирования после ряда преобразований входят лишь две матрицы: А и В. Тогда эту форму представления стационарного объекта можно записать в виде векторно-матричного уравнения

, (1.1)

где у и u векторы размерностей (n 1) и (m 1); А и В  матрицы размерности (n n) и (n m).

С целью использования одинаковой формы описания объектов непрерывных, дискретно-непрерывных и дискретных САР пользуются теорией спектрального разложения матриц, которая с помощью специально созданных алгоритмов позволяет получать единые математические модели в дискретной форме. К основному преимуществу такого подхода следует отнести возможность представления моделей с использованием матриц до 5080-го порядков, без существенного понижения точности спектрального разложения матриц.

Рассмотрим алгоритмы, с помощью которых составляются дискретные модели многомерных объектов, описываемых типовым векторно-матричным уравнением (1.1). Аналитическое решение этого уравнения при начальных условиях y(t0) имеет вид

(1.2)

В моменты времени tT0 и t=(к+1)Т0 состояние объекта ук+1 связано с предыдущим состоянием ук соотношением

(1.3)

где  переходная матрица системы уравнений.

Математические зависимости для алгоритмов дискретных моделей можно составить с тремя типами экстраполяторов.

Самая простая дискретная модель может быть получена, если положить, что внутри интервала квантования сигнала, и () экстраполируется по одной точкеступеньки со значениями ик , т.е. перед объектом включен экстраполятор нулевого порядка Э0. В этом случае соотношение (1.3) можно представить в виде

ук+1=Фук+Fик . (1.4)

Здесь F=(Ф - I)А-1В  матрица коэффициентов, обеспечивающих передачу сигналов по входам дискретной модели.

1.2 Передаточные функции непрерывных и дискретных систем

Под передаточной функцией стационарных элементов понимают отношение изображения выходной величины к изображению функции входной величины, полученные при нулевых начальных условиях. Для многоконтурных стационарных элементов возможно получение матрицы передаточных функций на основе модели системы во временной области в векторно-матричной форме (1.1). Применяя преобразование Лапласа, получим:

IX(s)=AX(s)+BU(s), (1.5)

где I  единичная матрица. Путем несложных преобразований найдем:

X(s)=(Is – A)-1BU(s). (1.6)

Таким образом, матрицу передаточных функций в общем виде можно записать так:

MU=X(s)/U(s)=(Is – A)-1B (1.7)

1.3 Частотные характеристики непрерывных и

дискретных систем

Частотные характеристики линейных непрерывных систем находятся из передаточных функций после подстановки в них s=j и выделения действительной мнимой частей, т.е.

W0(j)=U0()+jV0(), (1.8)

где U0() и V0() соответственно действительная и мнимая частотные характеристики.

Пользуясь выражением (1.8), в декартовой системе координат строят амплитудно-фазовые частотные характеристики W0(j). Если перейти к полярной системе координат, то выражение (1.8) можно переписать в виде

(1.9)

где и 0()  соответственно амплитудная и фазовая частотные характеристики.

Из выражений (1.8) и (1.9) можно найти формулы для вычисления амплитудной и фазовой частотных характеристик:

(1.10)

Частотные характеристики линейных дискретных систем находятся путем подстановки в передаточные функции .

На практике амплитудные и фазовые частотные характеристики строят на полулогарифмической бумаге. Тогда ось  размечают в логарифмическом масштабе, где изменение частоты в 10 раз называется декадой, амплитуду откладывают в децибелах и фазу  в градусах.

1.4 Анализ устойчивости непрерывных и дискретных систем

Системы стабилизации должны обеспечивать устойчивость и заданную точность регулирования отклонений углов и координат центра масс ЛА от программных значений. При этом могут налагаться ограничения на значения отдельных параметров системы (управляющие воздействия или производные управляющих воздействий). Отклонения углов и угловых скоростей могут ограничиваться для определенных возмущающих воздействий.

Задача обеспечения устойчивости является доминирующей при синтезе систем стабилизации ЛА. Движение системы на конечном интервале времени считается устойчивым, если на этом интервале при заданных начальных условиях и действующих возмущений его параметры не превышают заданных ограничений  техническая устойчивость. Если система содержит существенные нелинейности, то для устойчивости при заданных начальных условиях и действующих возмущений необходимо чтобы при начальной амплитуде периодической составляющей, превышающей её установившееся значение с течением времени эта амплитуда стремилась к своему установившемуся значению, а параметры установившегося движения не превышали заданных ограничений.

Для анализа устойчивости линейной или линеаризованной системы используется понятие асимптотической устойчивости, при этом обычно Используется стационарные математические модели, полученные с использованием метода замороженных коэффициентов. Система является асимптотически устойчивой, если:

для непрерывных систем  корни характеристического полинома лежат в левой полуплоскости;

для дискретных систем  корни характеристического полинома лежат внутри окружности единичного радиуса.

Устойчивость непрерывных систем может исследоваться с помощью первого метода Ляпунова, а также алгебраических критериев (Гурвица, Рауса и Льенара-Шепара). Для дискретных систем используется критерий Кларка и Шур-Кона. Основным недостатком применения данных критериев следует считать невозможность получения при этом оценок качества и точности. Пользуясь ими для систем высокой размерности, проектировщик не может дать рекомендаций по выбору параметров, не только обеспечивающих запасы устойчивости, но и удовлетворяющих требованиям к качеству и точности процессов регулирования. Следует отметить, что на устойчивость дискретных нелинейных систем большое влияние оказывает выбор такта квантования.

Частотные критерии устойчивости предполагают использование передаточных функций для описания системы регулирования и справедливы при её полной наблюдаемости и управляемости. Тогда критерий устойчивости по Ляпунову аналогичен критериям Михайлова, Михайлова-Найквиста и D-разбиениям Неймарка. Эти критерии применимы к анализу как непрерывных, так и дискретных систем. Однако в первом случае они базируются на методах s-преобразований, во втором  z-преобразований. Положив s=j или z=ejT0, строятся частотные характеристики, по которым определяются устойчивости систем регулирования по фазам и модулям и с помощью специальных номограмм оценивают показатели качества и характеристики точности. Большим преимуществом частотных критериев устойчивости является возможность их распространение и на многие типы нелинейных систем.

Характеристики

Тип файла
Документ
Размер
812 Kb
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6710
Авторов
на СтудИзбе
287
Средний доход
с одного платного файла
Обучение Подробнее