86140 (640689), страница 3
Текст из файла (страница 3)
Пусть i = 2k.
Тогда имеем следующее
(1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 … 1/(2k-1 +1) + ….+ 1/2k) >
(1/2 + 1/4 + 1/4 + 1/8 +1/8 +1/8 +1/8 +… 1/2k +… +1/2k) = k/2
Отсюда следует, что при к стремящимся к бесконечности время также стремится к бесконечности, что и требовалось доказать.
Кстати из этого же следует, что хотя лев и не может догнать человека, но он может приблизиться к человеку сколь угодно близко. Это следует из того соображения, что в момент поворота человек разворачивается в сторону льва. Может показаться странным, что бесконечно большое количество разворотов не даёт возможность льву поймать человека. Объясняется это очень просто. Угол разворота каждый раз уменьшается.
Заключение
В процессе выполнения исследования были рассмотрены различные игры на преследования и были проанализированы алгоритмы поиска пути. В ходе работы была показана взаимосвязь между играми на преследование и окружностью Апполония, что позволяет некоторые задачи игр на преследование решать методами, не выходящими за рамки школьной математики, хотя в основном данные игры решаются методами теории дифференциальных уравнений.
Список использованных источников
-
Гервер М.Л., Про лису и собаку // Квант №2, 1973, с. 39–44.
-
Гервер М.Л., Собака бежит наперерез // Квант №3, 1973, с. 15–18.
-
Петросян Л.А., Преследование на плоскости // Петросян Л.А., Рихсеев Б.Б., – М.: Наука. Гл. ред. физ.-мат. лит., 1991. – 96 с. – (Попул. лекции по мат.; Вып. 61)