85034 (630686)
Текст из файла
Вопросы к Гос.Экзамену по дисциплине “Математика – Алгебра”
Вопрос 3. Определитель квадратной матрицы.
В вопросе рассматривается одна из характеристик матрицы - числовая. Все свойства определителя (числовые характеристики) матрицы рассматриваются для того, чтобы это число стало возможным находить. Введение понятия определителя матрицы позволяет расширить возможности теории решения систем линейных уравнении и другие приложения теории матриц.
Итак, введем определение определителя матрицы и рассмотрим его свойства.
Пусть дана квадратная матрица А=(aij)n n, где аij R
Для введения определения матрицы обратимся к некоторым вопросам теории подстановок.
П
одстановка = 1 2 … n называется взаимно-однозначное
(1) (2) …(n)
отображение множества М={1,2,...,n} на себя. Множество всех подстановок обозначается Sn, |Sn|=n!
Подстановки характеризуются своей четностью и нечетностью, которые вводятся через инверсию:
-если у подстановки четное число инверсии, то она четная;
-если-нечетное число инверсий, то она нечетная.
Для обозначения четности подстановки используется символ sgn( ) -знак подстановки. Зафиксируем ряд необходимых утверждений:1) = (единичная)-четная; 2) sgn (--1 ) = sgn ;
3) одна транспозиция меняет четность подстановки.
Опр.1.Определителем квадратной матрицы называется число, равное сумме n! слагаемых, каждое из которых есть произведение n элементов матрицы, взятых ровно по одному из каждой строки и каждого столбца матрицы со знаком sgn ( )
где -подстановка из индексов элементов произведения ,т.е.
|A|=sgn()a1 (1) a2 (2) …an (n) , A=(aij)n*n
приняты также обозначения для определителя: def A, Δ.
Теорема 2. Определитель матрицы обладает рядом свойств, среди которых следующие:
1. |A|=|At|,где Аt -трансионированная;
2. Определитель матрицы с нулевой строкой равен нулю;
3. Определитель матрицы с двумя пропорциональными строками равен нулю.
4. Определитель матрицы с двумя равными строками равен нулю.
5. Перестановка двух строк(столбцов) матрицы изменяет знак определителя.
6. Если к одной строке матрицы прибавить другую,уменьшенную на число, не изменяет ее
определитель.
7. Если i-строка (столбец) матрицы имеет вид i(a1+...ak b1+...bk c1+....ck),то определитель такой матрицы равен сумме K-определителей,каждый из которых в i-строке имеет соответственно ее слагаемые, а остальные элементы совпадают с элементами матрицы.
8. Если строку (столбец) матрицы умножить на число x, то определитель матрицы умножится на это число.
и другие.
Для решения проблемы вычисления определителя матрицы вводятся понятия минора элемента aij (Mij) и его алгебраического дополнения (Aij) .
Минором Mij элемента aij матрицы называется определитель матрицы,
полученный вычеркиванием i-строки и j-столбца.
Алгебраическим дополнением Aij элемента aij называется число (-1)i+j Мij
Имеет место теорема о разложении по элементам строки (столбца).
Теорема 3 . |A|= a1jA1j +a2jA2j +....+anjAnj или
|A|=ai1Ai1 +ai2Ai2 +...+ain Ain .
Доказательство разобьем на три случая:
Cлучай 1. a11…a1n
|A|= a21…a2n = ann Mnn
………
0……ann
Воспользуемся для доказательства определением определителя
|A|=sgn()a1 (1) a2 (2)…a n-1, (n-1) a n (n)
Так как в n-ой строке все элементы кроме ann нули, то все слагаемые в определителе кроме ann равны нулю. Тогда определитель такой матрицы равен:
sgn() a1 (1) a 2 (2)....a n-1, (n-1) a n n =a n n (
sgn(’) a 1(1) a 2 (2) ...a n-1,(n-1)),где
= 1 2 ... n-1 n ’ = 1 2 ... n-1
(1) (2) ... (n-1) (n) , (1) (2) ... (n) , т.к
= 1 2 ... n-1 n = 1 2 .... n
(1) (2) ... (n-1) (n ) (1) (2) ... (n) ,то sgn () =sgn(’).
Мы видим, что в скобках определитель порядка (n-1),полученного вычеркиванием n-ой строки и n-ого столбца. Поэтому
|A|=annMnn, что и требовалось доказать.
Случай 2.
a 11 ... a 1j .. a 1n
|A|= ................................. = a ij A ij
0 ... a ij ... 0
..................................
a n1 ... a nj ... a nn
Для доказательства воспользуемся свойством перестановки строк и столбцов матрицы, получим:
A11 ... a1j ... a1n a11 .. a1j ..a1n a11 .. a1n .. a1j
A = ....................... =
n-i .................... =
n-i
n-j .................... =
0 .. aij ... 0 an1 .. anj ..ann an1 .. ann ..anj
an1 .. anj ... ann 0 .. aij .. 0 0 .. 0 .. aij
=
2n-
Mij*aij=
i+jaijMij=aijAij
Случай 3. |A|=a1iA1i +a2iA2i +....+aniAni.
A11 .. a1j .. ann ... a1j+0+..+0 ... .. a1j .. .. 0 .. ... 0
A21 .. a2j .. a2n ... 0 +a2j+..+0 .. .. 0 .. .. a2j .. ... 0
A = ..................... = ......................... = ......... + .......... +..+ ....... =
an1 .. anj .. ann ... 0+0+..+anj ... .. 0 .. .. 0 .. ...anj
= a1jA1j+a2jA2j+..+anjAnj
Рассмотренная теорема позволяет вычислить определитель матрицы любого порядка .Теория определителей имеет приложительное значение, то есть используется в качестве средства для решения вопрос в математике. В частности, она лежит в основе решения систем линейных уравнений как одного из способов. Возможность использования теории определителей для решения систем зафиксированы теоремой Крамера.
Теорема 4. (Крамера). Если |A| не равен нулю, то система aijxj=bi, где i=1,n; j=1,n имеет единственное решение, которое находится по формуле:
xi=
, где
= A ,
xi-определитель матриц, полученных из А заменой i-столбца столбцом свободных членов.
Пусть (1) aijxj=bj, i=j=1,n, |A| 0. Запишем систему (1) в виде матричного уравнения (2): AX=b, где А-основная матрица системы, .
X1 b1
X= X2 , b = b2
.. ..
xn bn
Е
сли |A| 0 А-1 А-1АХ=А-1b X=A-1 b. Известна теорема утверждающая, что A-1 =
A* , где A* -присоединенная матрица к матрице A, она состоит из алгебраических дополнений элементов, расположенных в столбцах. Тогда:
A11 A21 .. An1 b1 b1A11+b2A22+..+bnAn1
X=
A* b =
A12 A22 .. An2 b2 =
b1A12+b2A22+..+bnAn2 =
........................ ... ...................................
A1n A2n .. Ann bn b1A1n+b2A2n+..+bnAnn
x1
=
x2 ,
......
xn
ч
то и позволит получить формулу: Xi=
, где
= A , i=1,n
Вопрос 4. Бинарные отношения.
Математика как наука отражает мир взаимодействующих простых и сложных объектов (вещей, явлений, процессов). Абстрагируясь от реальности, математика рассматривает унарные, бинарные и другие отношения.
В вопросе требуется рассмотреть бинарные отношения, их свойства и особо обратить внимание на отношение эквивалентности, заданного на одном множестве. Рассмотрим прямое произведение двух множеств. A*B={a,b}, aA, bB}. Мы имеем множество упорядоченных пар. Есть смысл рассматривать его подмножество, которое и носит название “бинарное отношение”.
Опр.1 Бинарным отношением, заданным на множестве А, называется подмножество прямого произведения А*А. В силу своей природы, бинарные отношения являются множеством упорядоченных пар элементов из А.
Обозначения: W=a,b /,a,bA; aWb, a,bA; a,bW,где a,bA
Например, бинарные отношения являются:
1. ""на множестве прямых.
2. "=" на множестве чисел.
3. " " изоморфизм на множестве алгебр.
4. " ~ " эквивалентность систем и др.
Бинарные отношения могут обладать свойствами:
1) рефлексивность: aA, aWa;
2) симметричность: a,bA, aWbbWa;
3) транзитивность: a,b,c A,aWb и bWcaWc
4) связность: a,bA,aWbbWa;
5) антирефлексивность: aA,a,aW;
6) антисимметричность: a,bA,aWb,bWaa=b
В зависимости от того, каким набором свойств обладают отношения, они допускают
к
лассификацию, которую представим схемой:
Бинарное
отношение
ф
ункциональность эквивалентность: порядок:
xA, ! yA: рефлексивность, антисимметричность,
f:xy cимметричность, транзитивность
транзитивность
строгий порядок: нестрогий порядок:
антирефлексивность рефлексивность
частичный порядок: полный порядок:
не обладает свойством обладает связностью
связности
Остановимся на отношении эквивалентости, то есть на отношении WA*A, обладающее свойствами рефлексивности, симметричности, транзитивности. Легко проверить, что примерами таких отношений являются "=", "~", "сравнение по модулю", изоморфизм алгебр и другие.
Отношение эквивалентности играет большую роль в математике, значимость его определяется тем, что оно задает разбиение, а потому позволяет получать новые множества. Рассмотрим это подробнее.
Разбиением множества называется совокупность непустых подмножеств, непересекающихся, объединение которых совпадает с данным множеством.
Имеет место теорема, которая позволяет рассматривать отношение эквивалентности как разбиение.
Теорема 2. Бинарное отношение задает на A0 разбиение.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.















