11025 (630190), страница 3

Файл №630190 11025 (Концепции современного естествознания) 3 страница11025 (630190) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Изомеры – это соединения, которые состоят из одних и тех же веществ, но с разными свойствами.

Изотопы – атомы одного и того же химического элемента, имеющие одинаковое строение и разный вес.

35. Системный подход. Свойства и структура систем.

Системный подход – путь анализа сложных проблем, в которых проблема рассматривается как система с большим числом внутренних связей, связанная с другими сопутствующими проблемами внешних связей. Такой подход позволяет не только быстро предложить ряд решений, но и выбрать из них оптимальное (например, решение экологических проблем). Системный анализ – это совокупность методов и процедур, направленных на решение сложных комплексных проблем.

Система – это совокупность объектов, объединенных внутренними связями и образующих качественно новое целое и взаимодействующее с внешней средой посредством внешних связей. Система состоит из объектов, названных элементами. Элемент – это наименьшая единица системы. Элементы объединяются в подсистемы. Подсистема – это часть системы, которая обладает определенной автономностью, но в то же время подчиняется системе и управляется ею. Примером системы может служить человек. Связи в системе. 1 тип – связи по горизонтали – связи координации между однопорядковыми элементами. Они носят коррелирующий характер (когда ни одна часть системы не может измениться без других частей, т.е. корреляция – это взаимозависимость). 2 тип – связи по вертикали (связи субординации, иерархичные связи). Иерархичность – это включение систем нижних уровней в системы более высоких уровней. Системные свойства. Эмерджентность (дословно "возникающие") – это проявление у системы новых свойств, которых нет у составляющих систему элементов и подсистем. Стационарность (стабильность) - неизменность параметров системы во времени под действием внешних факторов. Устойчивость системы – это способность системы возвращаться в исходное состояние после выхода из этого состояния под действием внешних факторов. Пластичность – это способность системы возвращаться в исходное состояние после прекращения действия внешнего фактора. Необходимое разнообразие элементов означает, что система не может состоять из одинаковых элементов. Инерционность – это способность системы пассивно сопротивляться внешним воздействиям, т.е., система не может мгновенно измениться под действием внешних факторов. Классификация систем. Системы бывают открытые, закрытые и изолированные. Открытой является система, которая имеет активные двусторонние связи с внешней средой. Закрытой называется система, если связи являются односторонними, направленными внутрь системы и система не дает отклика на внешние воздействия. Изолированными являются системы при полном отсутствии связей с внешней средой. Типы систем. Системы бывают материальные (из материальных объектов, объективные, т.е. не зависят от ученых) и идеальные (они создаются для изучения материальных систем). Иначе идеальные системы называются концептуальными (научно-теоретическими). Системы бывают определенные и вероятностные. Определенные системы (или детерминистские). Поведение таких систем можно точно и однозначно предсказать. Поведение в вероятностной системе носит вероятностный характер.

38. Термодинамика. Первый, второй, третий законы термодинамики.

Термодинамика – это наука о тепловых явлениях, которая исследует физические процессы, происходящие при преобразовании тепловой энергии.

Первый закон термодинамики: энергия не возникает из ничего и не исчезает в никуда, она лишь может превращаться. Это одно из основных положений термодинамики, являющееся по существу законом сохранения энергии в применении к термодинамическим процессам. Было сформулировано в нач. 19 века.

Второй закон термодинамики: невозможен самопроизвольный переход теплоты от тела более холодного к телу более нагретому без каких-либо других изменений в системе или окружающей среде.

Третий закон термодинамики: нельзя охладить тело до абсолютного нуля (энтропия физической системы при стремлении температуры к абсолютному нулю не зависит от параметров системы и остается неизменной).

Энтропия – это необратимость реакции (например, при сжигании угля в топке паровоза, выделяется дым, обратить дым в уголь невозможно). Энтропия – это функция, составляющая систему, которая характеризует степень беспорядка в системе.

40. Концепция самоорганизации. Синергетика.

Синергетика - это наука о самоорганизации сложных открытых систем. Самоорганизация - процесс формирования в системе все более сложных и сложных подсистем. Этот процесс естественен. Этот процесс вызван не специфическим воздействием извне. Другими словами, самоорганизация в общем понимании - это присущая материи способность к усложнению элементов и созданию все более упорядоченных структур в ходе своего развития; в узком понимании - это скачок, фазовый переход системы из менее в более упорядоченное состояние. В самоорганизации всегда возникает нечто новое, чего раньше не было. Самоорганизация - это междисциплинарная область знания, ведущий принцип всего современного естествознания, применение ко многим предметам, наукам.

В процессе усложнения систем различают два взаимодополняющих механизма: объединение частей и разделение (фракционирование) систем. Механизмы, основанные на этих двух принципах, обнаруживаются на всех уровнях сложности и упорядоченности, начиная с макромира и заканчивая крупномасштабными структурами Вселенной. На разных уровнях сложности системы в основе лежат силы, казалось бы, разной природы, но, в конечном счете все они сводятся к четырем фундаментальным взаимодействиям.

Другая сторона явления самоорганизации - информативность, способность системы любого уровня создавать, накапливать, хранить и использовать информацию, в том числе и о направлении своего развития.

Примеры самоорганизации: торнадо, химические часы, биологические процессы (эволюция), социальные системы (общество), формирование человеческой психики на протяжении жизни.

Необходимые условия самоорганизации:

Открытость системы (взаимодействие с другими системами, с окружающей средой): обмен энергией, обмен веществом, обмен информацией при деградации.

Формирование циклических процессов.

Принцип колыбели. Самоорганизация не происходит везде, а лишь в отдельных, особо сложных частях. Система должна быть погружена в другую систему, более большую ( как бы в колыбели). Нет равноправия. Характер самоорганизации - глобальность деградации и локальность самоорганизации.

Достаточно длительный срок. Системе проще ничего не делать, чем что-то делать. Система обычно находится в состоянии динамического равновесия, т.е. проходят какие-то процессы в системе, но в общем она не изменяется.

Система должна быть достаточно далека от состояния термодинамического равновесия. Иначе больше вероятность деградации, чем самоорганизации.

Уровни самоорганизации в природе:

Космологический - происхождение вещества из вакуума, появление барионной ассиметрии, разделение различных типов фундаментальных взаимодейтсвий, формирование протонов и нейтронов, формирование атомов водорода и гелия, первичный нуклеосинтез, разделение атомов вещеста и электромагнитного излучения.

Астрофизический - формирование галактик, звезд и планетных систем, звездный нуклеосинтез, образование в космосе простейших молекул вплоть до органических.

Геофизический - формирование и эволюция литосферы, гидросферы и атмосферы Земли как благоприятного резервуара для появления сложных органических молекул.

Химический и биохимический - химическая и биохимическая эволюция молекул и молекулярных агрегатов.

Биологический - биологическая эволюция от появления первых клеток до высших животных и человека, формирование и развитие общего в биосфере.

Социальный - социальная эволюция как историческое развитие различных форм человеческих сообществ от первобытных племен до современной всемирной цивилизации.

Психический и интеллектуальный - психическая и интеллектуальная эволюция от появления языка и письменности, мифологии ирелигии до современного состояния единой мировой науки; попытки формирования ноосферы.

Система обязательно когда-нибудь находится в состоянии кризиса, когда любая маленькая деталь может привести к непредсказуемым последствиям, гибели системы. Теория катастроф с математической точки зрения. Катастрофа - это когда при малом взаимодействии система уходит от прежнего динамического состояния и переходит в новое состояние. Система должна пережить катастрофу, чтобы самоорганизоваться.

Бифуркация - разветвление траектории движения тела или дальнейшего пути развития системы в некоторый момент времени. Если предсказание самоорганизации и возможно, то лишь ограниченно, локально, т.к. состояние катастрофы непредсказуемо - бифуркация : либо система "выздоравливает", либо "умирает".

37. Развитие представлений о природе теплоты. Вещественная и кинетическая теории теплоты.

Вокруг нас происходят явления, внешне весьма косвенно связанные с механическим движением. Это явления, наблюдае­мые при изменении температуры тел, представляющих собой макросистемы, или при переходе их из одного состояния (например, жидкого) в другое (твердое либо газообразное). Та­кие явления называются тепловыми. Тепловые явления играют огромную роль в жизни людей, животных и растений. От температуры окружающей среды зави­сит возможность жизни на Земле. Люди добились относитель­ной независимости от окружающей среды после того как научи­лись добывать и поддерживать огонь. Многие философы древности рассматривали огонь и связан­ную с ним теплоту как одну из стихий, которая наряду с землей, водой и воздухом образует все тела. Одновременно предприни­мались попытки связать теплоту с движением, так как было за­мечено, что при соударении тел или трении друг о друга они нагреваются.

Первые успехи на пути построения научной теории теплоты относятся к началу XVII в., когда был изобретен термометр, и появилась возможность количественного исследования тепловых процессов и свойств макросистем.

Вновь был поставлен вопрос о том, что же такое теплота. На­метились две противоположные точки зрения. Согласно одной из них — вещественной теории тепла, теплота рассматривалась как особого рода невесомая "жидкость", способная перетекать из од­ного тела к другому. Эта жидкость была названа теплородом. Чем больше теплорода в теле, тем выше температура тела.

Согласно другой точке зрения, теплота — это вид внутрен­него движения частиц тела. Чем быстрее движутся частицы тела, тем выше его температура.

Таким образом, представление о тепловых явлениях и свойст­вах связывалось с атомистическим учением древних философов о строении вещества. В рамках таких представлений теорию тепла первоначально называли корпускулярной, от слова "корпускула" (частица). Ее придерживались ученые: Ньютон, Гук, Бойль, Бернулли.

Большой вклад в развитие корпускулярной теории тепла сде­лал великий русский ученый М.В. Ломоносов. Он рассматривал теплоту как вращательное движение частиц вещества. С помо­щью своей теории он объяснил в общем процессы плавления, испарения и теплопроводности, а также пришел к выводу о су­ществовании "наибольшей или последней степени холода", ко­гда движение частичек вещества прекращается. Благодаря рабо­там Ломоносова среди русских ученых было очень мало сторон­ников вещественной теории теплоты.

Но все же, несмотря на многие преимущества корпускуляр­ной теории теплоты, к середине XVIII в. временную победу одержала теория теплорода. Это произошло после того как экс­периментально было доказано сохранение теплоты при теплооб­мене. Отсюда был сделан вывод о сохранении (неуничтожении) тепловой жидкости — теплорода. В вещественной теории было введено понятие теплоемкости тел и построена количественная теория теплопроводности. Многие термины, введенные в то время, сохранились и сейчас.

С помощью корпускулярной теории теплоты не удалось по­лучить столь важные для физики количественные связи между величинами. В частности, не удалось объяснить, почему теплота сохраняется при теплообмене. В те времена не была ясна связь между механической характеристикой движения частиц — их кинетической энергией и температурой тела. Понятие энергии еще не было введено в физику. Поэтому, вероятно, на основе корпускулярной теории не могли быть достигнуты в XVIII в. те немалые успехи в развитии теории тепловых явлений, какие да­ла простая и наглядная теория теплорода.

К концу XVIII в. вещественная теория теплоты начала сталкиваться со все большими трудностями и к середине XIX в. потерпела полное и окончательное поражение. Большим числом разнообразных опытов было показано, что "тепловой жидкости" не существует. При трении можно получить любое количество теплоты: тем больше, чем более длительное время совершается операция трения. С другой стороны, при совер­шении работы паровыми машинами пар охлаждается и теплота исчезает.

В середине XIX в. была доказана связь между механической работой и количеством теплоты. Подобно работе количество те­плоты оказалось мерой изменения энергии. Нагревание тела связано не с увеличением в нем количества особой невесомой "жидкости", а с увеличением его энергии. Принцип теплорода был заменен гораздо более глубоким законом сохранения энер­гии. Было установлено, что теплота представляет собой форму энергии.

Характеристики

Тип файла
Документ
Размер
2,57 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6548
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее